问题情境:如图1,在中, , , D,E分别是 , 的中点,连接 .
如图2,将绕着点C逆时针旋转 , 连接BE和 , 小明发现 , , 请你证明该结论.
如图3,将绕着点C逆时针旋转 , 此时恰好有 , 连接 , 延长 , 交于点F,试猜想四边形的形状,并说明理由.
拓展探究:
①平分、 , ②、互相平分,③ , ④、、、四点共圆.
(一)尝试探究:如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分别在线段BC、CD上,∠EAF=30°,连接EF.
如图1,和都是等边三角形,边和在同一直线上,是边的中点, , 连接 , 则下列结论正确的是.(填序号即可)
①;②;③;④整个图形是轴对称图形.
①依题意补全图1;
②小深通过观察、实验,发现线段存在以下数量关系:的平方和等于的平方.小深把这个猜想与同学们进行交流,通过讨论,形成证明该猜想的几种想法:
想法1:将线段绕点逆时针旋转 , 得到线段 , 要证的关系,只需证的关系.
想法2:将沿翻折,得到 , 要证的关系,只需证的关系.
…
请你参考上面的想法,用等式表示线段的数量关系并证明;(一种方法即可)
如图1,等腰中, , 点为边一点,以为腰向下作等腰 , . 连接 , , 点为的中点,连接 . 猜想并证明线段与的数量关系和位置关系.
在(1)的条件下 , 如图2,将等腰绕点旋转,上述结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
如图3,等腰中, , . 在中, , . 连接 , , 点为的中点,连接 .
绕点旋转过程中,
①线段与的数量关系为:;
②若 , , 当点在等腰内部且的度数最大时,线段的长度为.
【操作一】:将图1中的三角尺绕着点O以每秒的速度按顺时针方向旋转.当它完成旋转一周时停止,设旋转的时间为t秒.
小炎遇到这个一个问题:如图1,点E、F分别在正方形的边上, , 连接 , 则 , 试说明理由.
小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中,她先尝试了翻折、旋转、平移的方法,最后发现线段是共点并且相等的,于是找到解决问题的方法.她的方法是将绕着点A逆时针旋转90°得到 , 再利用全等的知识解决这个问题(如图2).
参考小炎同学思考问题的方法,解决下列问题:
如图②,固定 , 使绕点C旋转,当点D恰好落在边上时,
①求线段与的位置关系;
②设的面积为 , 的面积为 , 求与的数量关系.
当绕点C旋转到如图③所示的位置时,小明猜想(1)中与的数量关系仍然成立,并尝试分别作出了和中、边上的高,请你证明小明的猜想.
问题情境:
将两个完全相同的等腰Rt△ABC和等腰Rt△CDE按图1方式放置,∠ACB=∠DCE=90°,将Rt△CDE绕点C顺时针旋转,连接AE,BD,AE与BD相交于点G.
猜想证明:
【操作一】三角板保持不变,将三角板绕着点以每秒的速度按逆时针方向旋转.当它完成旋转一周时停止,设旋转的时间为t秒.
【操作二】如图2,在三角板绕着点B以每秒的速度按逆时针方向旋转的同时,三角板也绕着点B以每秒的速度按逆时针方向旋转,设旋转时间为t秒().
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.
∵AB=CD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据,易证△AFG≌ , 得EF=BE+DF.
如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF.
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.
【初步探究】