x的取值 | -2 | 2 | p | q |
分式的值 | 无意义 | 2 | 0 | 1 |
如果每小时只安排1名工人,那么按照甲、乙、丙的轮流顺序至完成工作任务,共需( )小时.
在对某些多项式进行因式分解时,需要把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符号相反的项,这样的分解因式的方法称为拆项添项法,如:
例1分解因式:
甲 | 乙 | 丙 | |
数量(个) | m | ||
批发单价(元) | |||
当时,若批发这三种礼品的平均单价为元/个,求b的值.
当时,若该店批发了个丙礼品,且a为正整数,求a的值.
①若甲完成的数量比乙完成的2倍少6幅,求在几时几分恰好全部完成.
②因义拍实际需要,现增加10幅作品B分配给甲、乙两位同学,并要求尽早完成制作,已知甲、乙每小时分别能做6幅和4幅作品B,请你结合方案评价表直接在表格中写出一种作品A,B的分配数量方案.
作品类型 |
作品A |
作品B |
分配给甲的数量 |
||
分配给乙的数 |
||
方案评价表 |
||
方案等级 |
完成时间 |
评分 |
合格 |
18:26~18:36 |
1分 |
良好 |
18:16~18:26 |
2分 |
优秀 |
18:16前 |
3分 |
【材料1】我们知道,假分数可以化为整数与真分数的和的形式,例如: =1+ 。在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为假分式;当分子的次数小于分母的次数时,我们称之为真分式,如 , ,…这样的分式是假分式;如 与 …这样的分式是真分式。类似的,假分式也可以化为整式与真分式的和(差)的形式。
例如:将分式 化成一个整式与一个真分式的和(差)的形式。
方法1: = = =x-1-
方法2:由分母为x+3,可设x2+2x-5=(x+3)(x+a)+b(a,b为待确定的系数)
∵(x+3)(x+a)+b=x2+ax+3x+3a+b=x²+(a+3)x+(3a+b)
∴x²+2x-5=x²+(a+3)x+(3a+b)
对于任意x,上述等式均成立,
∴ ,解得
∴x²+2x-5=(x+3)(x-1)-2
∴ = = =x-1-
这样,分式 就被化成一个整式与一个真分式的和(差)的形式。
【材料2】对于式子2+ ,由x2≥0知1+x²的最小值为1,所以 的最大值为3,
所以2+ 的最大值为5。
请根据上述材料,解答下列问题:
① =+。
② =+。