(a+b)4= a4+4a3b+a2b2+4ab3+b4
小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.观察与操作:
(1)他拼成如图②所示的正方形,根据四个小纸片的面积之和等于大正方形的面积,得到:a2+2ab+b2=(a+b)2 , 验证了完全平方公式;即:多项式 a2+2ab+b2分解因式后,其结果表示正方形的长(a+b)与宽(a+b)两个整式的积.
(2)当他拼成如图③所示的矩形,由面积相等又得到:a2+3ab+2b2=(a+2b)(a+b),即:多项式 a2+3ab+2b2分解因式后,其结果表示矩形的长(a+2b)与宽(a+b)两个整式的积.
问题解决:
(1)请你依照小刚的方法,利用拼图写出恒等式a2+4ab+3b2 . (画图说明,并写出其结果)
(2)试猜想面积是2a2+5ab+3b2的矩形,其长与宽分别是多少?(画图说明,并写出其结果)