当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖南省郴州市2023年中考数学试卷

更新时间:2024-07-14 浏览次数:224 类型:中考真卷
一、单选题
二、填空题
三、解答题
  • 19. (2023·郴州) 某校计划组织学生外出开展研学活动,在选择研学活动地点时,随机抽取了部分学生进行调查,要求被调查的学生从A、B、C、D、E五个研学活动地点中选择自己最喜欢的一个.根据调查结果,编制了如下两幅不完整的统计图.

      

    1. (1) 请把图1中缺失的数据,图形补充完整;
    2. (2) 请计算图2中研学活动地点C所在扇形的圆心角的度数;
    3. (3) 若该校共有1200名学生,请估计最喜欢去D地研学的学生人数.
  • 20. (2023·阳西模拟) 如图,四边形是平行四边形.

      

    1. (1) 尺规作图;作对角线的垂直平分线(保留作图痕迹);
    2. (2) 若直线分别交两点,求证:四边形是菱形
  • 21. (2024九上·汝城期末) 某次军事演习中,一艘船以的速度向正东航行,在出发地测得小岛在它的北偏东方向,小时后到达处,测得小岛在它的北偏西方向,求该船在航行过程中与小岛的最近距离(参考数据: . 结果精确到).

      

  • 22. (2023·郴州) 随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.
    1. (1) 求这两个月中该景区游客人数的月平均增长率;
    2. (2) 预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?
  • 23. (2023·郴州) 如图,在中,是直径,点是圆上一点.在的延长线上取一点 , 连接 , 使

      

    1. (1) 求证:直线的切线;
    2. (2) 若 , 求图中阴影部分的面积(结果用含的式子表示).
  • 24. (2023·郴州) 在实验课上,小明做了一个试验.如图,在仪器左边托盘(固定)中放置一个物体,在右边托盘(可左右移动)中放置一个可以装水的容器,容器的质量为 . 在容器中加入一定质量的水,可以使仪器左右平衡.改变托盘与点的距离)(),记录容器中加入的水的质量,得到下表:

      

    托盘与点的距离

    30

    25

    20

    15

    10

    容器与水的总质量

    10

    12

    15

    20

    30

    加入的水的质量

    5

    7

    10

    15

    25

    把上表中的各组对应值作为点的坐标,在平面直角坐标系中描出这些点,并用光滑的曲线连接起来,得到如图所示的关于的函数图象.

      

    1. (1) 请在该平面直角坐标系中作出关于的函数图象;
    2. (2) 观察函数图象,并结合表中的数据:

      ①猜测之间的函数关系,并求关于的函数表达式;

      ②求关于的函数表达式;

      ③当时,的增大而(填“增大”或“减小”),的增大而(填“增大”或“减小”),的图象可以由的图象向(以“上”或“下”或“左”或“右”)平移得到.

    3. (3) 若在容器中加入的水的质量(g)满足 , 求托盘与点的距离(cm)的取值范围.
  • 25. (2023·郴州) 已知是等边三角形,点是射线上的一个动点,延长至点 , 使 , 连接交射线于点

      

    1. (1) 如图1,当点在线段上时,猜测线段的数量关系并说明理由;
    2. (2) 如图2,当点在线段的延长线上时,

      ①线段的数量关系是否仍然成立?请说明理由;

      ②如图3,连接 . 设 , 若 , 求四边形的面积.

  • 26. (2024九下·岳阳月考) 已知抛物线轴相交于点 , 与轴相交于点

    1. (1) 求抛物线的表达式;
    2. (2) 如图1,点是抛物线的对称轴上的一个动点,当的周长最小时,求的值;
    3. (3) 如图2,取线段的中点 , 在抛物线上是否存在点 , 使?若存在,求出点的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息