当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖北省鄂州市2023年数学中考试卷

更新时间:2023-07-17 浏览次数:164 类型:中考真卷
一、选择题(本大题共10小题,每小题3分,共计30分)
二、填空题(本大题共6小题,每小题3分,共计18分)
三、解答题(本大题共8小题,17~21题每题8分,22~23每题10分,24题12分,共计72分)
  • 17. (2023·鄂州) 先化简,再求值: , 其中a=2.
  • 18. (2023九上·花溪期中) 如图,点E是矩形ABCD的边BC上的一点,且AE=AD.

    1. (1) 尺规作图(请用2B铅笔):作∠DAE的平分线AF,交BC的延长线于点F,连接DF.(保留作图痕迹,不写作法);
    2. (2) 试判断四边形AEFD的形状,并说明理由.
  • 19. (2023·鄂州)   2023年5月30日上午,神舟十六号载人飞船成功发射,举国振奋.为了使同学们进一步了解中国航天科技的快速发展,鄂州市某中学九(1)班团支部组织了一场手抄报比赛.要求该班每位同学从A:“北斗”,B:“5G时代”,C:“东风快递”,D:“智轨快运”四个主题中任选一个自己喜爱的主题.比赛结束后,该班团支部统计了同学们所选主题的频数,绘制成如下两种不完整的统计图,请根据统计图中的信息解答下列问题.

    1. (1) 九(1)班共有      ▲      名学生;并补全图1折线统计图;
    2. (2) 请阅读图2,求出D所对应的扇形圆心角的度数;
    3. (3) 若小林和小峰分别从A,B,C,D四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.
  • 20. 鄂州市莲花山是国家4A级风景区,元明塔造型独特,是莲花山风景区的核心景点,深受全国各地旅游爱好者的青睐.今年端午节,景区将举行大型包粽子等节日庆祝活动.如图2,景区工作人员小明准备从元明塔的点G处挂一条大型竖直条幅到点E处,挂好后,小明进行实地测量,从元明塔底部F点沿水平方向步行30米到达自动扶梯底端A点,在A点用仪器测得条幅下端E的仰角为30°;接着他沿自动扶梯AD到达扶梯顶端D点,测得点A和点D的水平距离为15米,且tan∠DAB=;然后他从D点又沿水平方向行走了45米到达C点,在C点测得条幅上端G的仰角为45°.(图上各点均在同一个平面内,且G,C,B共线,F,A,B共线,G、E、F共线,CD∥AB,GF⊥FB).

    1. (1) 求自动扶梯AD的长度;
    2. (2) 求大型条幅GE的长度.(结果保留根号)
  • 21. (2023·鄂州) 1号探测气球从海拔10m处出发,以1m/min的速度竖直上升.与此同时,2号探测气球从海拔20m处出发,以am/min的速度竖直上升.两个气球都上升了1h.1号、2号气球所在位置的海拔(单位:m)与上升时间x(单位:min)的函数关系如图所示.请根据图象回答下列问题:

    1. (1) a=,b
    2. (2) 请分别求出与x的函数关系式;
    3. (3) 当上升多长时间时,两个气球的海拔竖直高度差为5m?
  • 22. (2024九下·吉安期中) 如图,AB为⊙O的直径,E为⊙O上一点,点C为的中点,过点C作CD⊥AE,交AE的延长线于点D,延长DC交AB的延长线于点F.

    1. (1) 求证:CD是⊙O的切线;
    2. (2) 若DE=1,DC=2,求⊙的半径长.
  • 23. (2023·鄂州) 某数学兴趣小组运用《几何画板》软件探究y=ax2(a>0)型抛物线图象.发现:如图1所示,该类型图象上任意一点P到定点F(0,)的距离PF,始终等于它到定直线l:y=的距离PN (该结论不需要证明).他们称:定点F为图象的焦点,定直线l为图象的准线,y=叫做抛物线的准线方程.准线l与y轴的交点为H.其中原点O为FH的中点,FH=2OF= . 例如,抛物线y=2x2 , 其焦点坐标为F(0,),准线方程为l:y= , 其中PF=PN,FH=2OF=

    1. (1) 【基础训练】请分别直接写出抛物线y=的焦点坐标和准线l的方程:
    2. (2) 【技能训练】如图2,已知抛物线y=上一点P(x0 , y0)(x0>0)到焦点F的距离是它到x轴距离的3倍,求点P的坐标;
    3. (3) 【能力提升】如图3,已知抛物线y=的焦点为F,准线方程为l.直线m:y=交y轴于点C,抛物线上动点P到x轴的距离为d1 , 到直线m的距离为d2 , 请直接写出d1+d2的最小值;
    4. (4) 【拓展延伸】该兴趣小组继续探究还发现:若将抛物线y=ax2(a>0)平移至y=a(x-h)2+k(a>0).

      抛物线y=a(x-h)2+k(a>0)内有一定点F(h,),直线l过点M(h,)且与x轴平行.当动点P在该抛物线上运动时,点P到直线l的距离PP1始终等于点P到点F的距离(该结论不需要证明).例如:抛物线y=2(x-1)2+3上的动点P到点F(1,)的距离等于点P到直线l:y=的距离.

      请阅读上面的材料,探究下题:

      如图4,点D(-1,)是第二象限内一定点,点P是抛物线y=-1上一动点.当PO+PD取最小值时,请求出△POD的面积.

  • 24. (2023·鄂州) 如图1,在平面直角坐标系中,直线l⊥y轴,交y轴的正半轴于点A,且OA=2,点B是y轴右侧直线l上的一动点,连接OB.

    1. (1) 请直接写出点A的坐标;
    2. (2) 如图2,若动点B满足∠ABO=30°,点C为AB的中点,D点为线段OB上一动点,连接CD.在平面内,将△BCD沿CD翻折,点B的对应点为点P,CP与OB相交于点Q,当CP⊥AB时,求线段DQ的长;
    3. (3) 如图3,若动点B满足=2,EF为△OAB的中位线,将△BEF绕点B在平面内逆时针旋转,当点O、E、F三点共线时,求直线EB与x轴交点的坐标;
    4. (4) 如图4,OC平分∠AOB交AB于点C,AD⊥OB于点D,交OC于点E,AF为△AEC的一条中线.设△ACF,△ODE,△OAC的周长分别为C1 , C2 , C3 . 试探究:在B点的运动过程中,当时,请直接写出点B的坐标.

微信扫码预览、分享更方便

试卷信息