当前位置: 初中数学 /人教版(2024) /九年级上册 /第二十一章 一元二次方程 /21.3 实际问题与一元二次方程
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

(人教版)2023-2024学年九年级数学上册21.3 实际...

更新时间:2023-07-31 浏览次数:97 类型:同步测试
一、选择题
  • 1. (2022九上·西山期中) “绿水青山就是金山银山”,某地为打造绿色产业,实行退耕还林,若计划2022年退耕还林10万公顷,以后退耕还林面积逐年递减,递减率均为10%,那么预计2024年退耕还林的面积为(    )
    A . 10万公顷 B . 9万公顷 C . 8.1万公顷 D . 7.29万公顷
  • 2. (2022九上·通榆期中) 2022年北京冬奥会女子冰壶比赛,有若干支队伍参加了单循环比赛(每两队之间都赛一场),单循环比赛共进行了45场,共有多少支队伍参加比赛?设共有x支队伍参加比赛,则所列方程为( )
    A . x(x+1)=45 B . =45 C . x(x-1)=45 D . =45
  • 3. (2021九上·潍城期中) 在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某小组成员之间共互赠了30本图书,若设该组共有名同学,那么依题意可列出的方程是(   )
    A . B . C . D .
  • 4. (2021九上·连山月考) 九年(5)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了 本图书,如果设全组共有 名同学,依题意,可列出的方程是(    )
    A . B . C . D .
  • 5. (2020九上·霍林郭勒期末) 一次围棋比赛,参赛的每两位棋手之间都要比赛一场,根据赛程计划共安排45场比赛,设本次比赛共有x个参赛棋手,则可列方程为(  )
    A . x(x﹣1)=45 B . x(x+1)=45 C . x(x﹣1)=45 D . x(x+1)=45
  • 6. (2024九上·长春月考) 某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x名学生,根据题意,列出方程为( )
    A . x(x-1)=2070 B . x(x+1)=2070 C . 2x(x+1)=2070 D . =2070
  • 7. (2024八下·巴林右旗期中) 初三、三班同学在临近毕业时,每一个同学都将自己的照片向全班其他同学各送一张以表示纪念,全班共送了1640张照片,如果设全班有x名学生,则根据题意,可列方程(  )
    A . x(x+1)=1640 B . x(x-1)=1640 C . 2x(x+1)=1640 D . x(x-1)=2×1640
  • 8. (2024九上·天河月考) 某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为
    A . B . x(x+1)=1980 C . 2x(x+1)=1980 D . x(x-1)=1980
  • 9. (2019九上·大连期末) 某校组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式是(   )
    A . x(x+1)=28 B . x(x-1)=28 C . x(x-1)=28 D . 2x(x-1)=28
  • 10. (2018九上·富顺期中) 如果抛物线y=-x2+2(m-1)x+m+1与x轴交于A、B两点,且A点在x轴正半轴上,B点在x轴的负半轴上,则m的取值范围应是( )
    A . m>1 B . m>-1 C . m<-1 D . m<1
二、填空题
三、解答题
  • 16.

    将一段铁丝围成面积为 的矩形,且它的长比宽多 ,求矩形的长.

  • 17. 把小圆形场地的半径增加5m得到大圆形场地,大圆形场地面积是小圆形场地的4倍,求小圆形场地的半径.


  • 18. (2022九上·西安月考) 新冠病毒肆虐全球,我国的疫情很快得到了控制,并且研发出安全性、有效性均非常高的疫苗.经调查发现,北京生物制药厂有1条生产线,最大产能是42万支/天,若每增加1条生产线,每条生产线的最大产能将减少2万支/天,现该厂要保证每天生产疫苗144万支,在既增加产能的同时又节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?
  • 19. (2024九上·北京市期中) 某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,求这种植物每个支干长出的小分支个数
四、综合题
  • 20. (2022九上·惠水期中) 如图,中,是方程的两根.

    1. (1) 求
    2. (2) 两点分别从出发,分别以每秒2个单位,1个单位的速度沿边向终点运动,(有一个点达到终点则停止运动),求经过多长时间后
  • 21. (2021九上·越秀期末) 某市为鼓励居民节约用水,对居民用水实行阶梯收费,每户居民用水量每月不超过a吨时,每吨按0.3a元缴纳水费;每月超过a吨时,超过部分每吨按0.4a元缴纳水费.
    1. (1) 若a=12,某户居民3月份用水量为22吨,则该用户应缴纳水费多少元?
    2. (2) 若如表是某户居民4月份和5月份的用水量和缴费情况:

      月份

      用水量(吨)

      交水费总金额(元)

      4

      18

      62

      5

      24

      86

      根据上表数据,求规定用水量a的值

  • 22. (2021九上·罗湖期中) 应用题:(本题第一问要求列方程作答)

    某市要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛.

    1. (1) 应该邀请多少支球队参加比赛?
    2. (2) 若某支球队参加3场后,因故不参与以后的比赛,问实际共比赛多少场?
  • 23. (2021九上·襄汾月考) 已知关于x的方程x2 -(m+1)x+2(m-1)=0,
    1. (1) 求证:无论m取何值时,方程总有实数根;
    2. (2) 若等腰三角形腰长为4,另两边恰好是此方程的根,求此三角形的另外两条边长.

微信扫码预览、分享更方便

试卷信息