当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2023年中考数学真题分类汇编(全国版):三角形(4)

更新时间:2023-07-23 浏览次数:82 类型:二轮复习
一、选择题
  • 1. (2023·荆州) 如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,B为上一点,OB⊥AC于D. 若AC=m,BD=150m,则的长为( )

    A . m B . m C . m D . m
  • 2. 如图,该几何体是由一个大圆锥截去上部的小圆锥后剩下的部分.若该几何体上、下两个圆的半径分别为1和2,原大圆锥高的剩余部分 , 则其侧面展开图的面积为(    )

      

    A . B . C . D .
  • 3. (2024·从江模拟) 已知点是等边的边上的一点,若 , 则在以线段为边的三角形中,最小内角的大小为(  )
    A . B . C . D .
  • 4. (2023·滨州) 如图,某玩具品牌的标志由半径为的三个等圆构成,且三个等圆相互经过彼此的圆心,则图中三个阴影部分的面积之和为(  )

      

    A . B . C . D .
  • 5. (2023·绥化) 如图,在菱形中, , 动点M,N同时从A点出发,点M以每秒2个单位长度沿折线A-B-C向终点C运动;点N以每秒1个单位长度沿线段向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,的面积为y个平方单位,则下列正确表示y与x函数关系的图象是( )

    A . B . C . D .
  • 6. 如图,在正方形中,点E为边的中点,连接 , 过点B作于点F,连接于点G,平分于点H.则下列结论中,正确的个数为(  )

     ② ③当时,

    A . 0个 B . 1个 C . 2个 D . 3个
  • 7. (2023·聊城) 如图,已知等腰直角 , 点C是矩形的公共顶点,且;点D是延长线上一点,且 . 连接 , 在矩形绕点C按顺时针方向旋转一周的过程中,当线段达到最长和最短时,线段对应的长度分别为m和n,则的值为( )

      

    A . 2 B . 3 C . D .
二、填空题
三、解答题
  • 18. (2024·江门模拟) 2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂 , 两臂夹角时,求A,B两点间的距离.(结果精确到 , 参考数据)

四、作图题
五、综合题
  • 20. (2024九下·襄阳月考) 如图,一次函数与函数为的图象交于两点.

    1. (1) 求这两个函数的解析式;
    2. (2) 根据图象,直接写出满足时x的取值范围;
    3. (3) 点P在线段上,过点P作x轴的垂线,垂足为M,交函数的图象于点Q,若面积为3,求点P的坐标.
  • 21. (2023·深圳) 如图,在单位长度为1的网格中,点O,A,B均在格点上, , 以O为圆心,为半径画圆,请按下列步骤完成作图,并回答问题:

    ①过点A作切线 , 且(点C在A的上方);

    ②连接 , 交于点D;

    ③连接 , 与交于点E.

    1. (1) 求证:的切线;
    2. (2) 求的长度.
  • 22. (2023·陕西) 如图,内接于 , 过点的垂线,交于点 , 并与的延长线交于点 , 作 , 垂足为 , 交于点

    1. (1) 求证:
    2. (2) 若的半径 , 求线段的长.
  • 23. (2023·荆州) 如图1,点P是线段AB上与点A,点B不重合的任意一点,在AB的同侧分别以A,P,B为顶点作 ∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB和射线BA,∠2的两边不在直线AB上,我们规定这三个角互为等联角,点P为等联点,线段AB为等联线.

    1. (1) 如图2,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段AB为等联线、某格点P为等联点的等联角,并标出等联角,保留作图痕迹;
    2. (2) 如图3,在Rt△APC中,∠A=90°, , 延长AP至点B,使AB=AC,作∠A的等联角∠CPD和∠PBD.将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.

      ①确定△PCF的形状,并说明理由;

      ②若AP:PB=1:2,BF=k,求等联线AB和线段PE的长(用含k的式子表示).

  • 24. (2023·长沙) 如图,点A,B,C在上运动,满足 , 延长至点D,使得 , 点E是弦上一动点(不与点A,C重合),过点E作弦的垂线,交于点F,交的延长线于点N,交于点M(点M在劣弧上).

      

    1. (1) 的切线吗?请作出你的判断并给出证明;
    2. (2) 记的面积分别为 , 若 , 求的值;
    3. (3) 若的半径为1,设 , 试求y关于x的函数解析式,并写出自变量x的取值范围.
  • 25. (2023·吉林) 如图,在正方形中, , 点是对角线的中点,动点分别从点同时出发,点的速度沿边向终点匀速运动,点的速度沿折线向终点匀速运动.连接并延长交边于点 , 连接并延长交折线于点 , 连接 , 得到四边形 . 设点的运动时间为)(),四边形的面积为

          

    1. (1) 的长为的长为 . (用含x的代数式表示)
    2. (2) 求关于的函数解析式,并写出自变量的取值范围.
    3. (3) 当四边形是轴对称图形时,直接写出的值.
  • 26. (2023·包头) 如图,在菱形ABCD中,对角线AC,BD相交于点 , 点P,Q分别是边BC,线段OD上的点,连接AP,QP,AP与OB相交于点.

    1. (1) 如图1,连接QA.当时,试判断点是否在线段PC的垂直平分线上,并说明理由;
    2. (2) 如图2, , 且

      ①求证:

      ②当时,设 , 求PQ的长(用含a的代数式表示).

  • 27. (2023·广东) 综合运用

    如图1,在平面直角坐标系中,正方形的顶点A在轴的正半轴上,如图2,将正方形绕点逆时针旋转,旋转角为交直线于点轴于点

    1. (1) 当旋转角为多少度时,;(直接写出结果,不要求写解答过程)
    2. (2) 若点 , 求的长;
    3. (3) 如图3,对角线轴于点 , 交直线于点 , 连接 , 将的面积分别记为 , 设 , 求关于的函数表达式.
  • 28. (2023·齐齐哈尔) 综合与实践

    数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.

    1. (1) 发现问题:如图1,在中, , 连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:°;
    2. (2) 类比探究:如图2,在中, , 连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及的度数,并说明理由;
    3. (3) 拓展延伸:如图3,均为等腰直角三角形, , 连接BE,CF,且点B,E,F在一条直线上,过点A作 , 垂足为点M.则BF,CF,AM之间的数量关系:
    4. (4) 实践应用:正方形ABCD中, , 若平面内存在点P满足 , 则.

微信扫码预览、分享更方便

试卷信息