当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市海淀区2023年中考二模数学考试试卷

更新时间:2023-10-19 浏览次数:92 类型:中考模拟
一、选择题(本大题共8小题,共16.0分。在每小题列出的选项中,选出符合题目的一项)
二、填空题(本大题共8小题,共16.0分)
三、解答题(本大题共12小题,共68.0分。解答应写出文字说明,证明过程或演算步骤)
  • 18. (2024·南京二模)  解不等式 , 并把它的解集在数轴上表示出来.
  • 19. (2023·海淀模拟)  如图,在中,
    1. (1) 使用直尺和圆规,作于点保留作图痕迹
    2. (2) 以为圆心,的长为半径作弧,交于点 , 连接
        
      写出图中一个与相等的角 .
  • 20. (2023九上·菏泽月考)  已知关于的一元二次方程
    1. (1) 判断方程根的情况,并说明理由;
    2. (2) 若方程的一个根为 , 求的值和方程的另一个根.
  • 21. (2024九下·北京市模拟)  在平面直角坐标系中,直线交于点
    1. (1) 求的值;
    2. (2) 已知点 , 过点作垂直于轴的直线交直线于点 , 交直线于点 , 直接写出的值.
  • 22. (2023·海淀模拟) 如图,平行四边形的对角线交于点的中点连接并延长至点 , 使得连接
    1. (1) 求证:四边形为平行四边形;
    2. (2) 若 , 求证:四边形为矩形.
  • 23. (2023·海淀模拟)  某企业生产甲、乙两款红茶,为了解两款红茶的质量,请消费者和专业机构分别测评随机抽取名消费者对两款红茶评分,并对数据进行整理、描述和分析,下面给出了部分信息.
    甲款红茶分数百分制的频数分布表如下:                                                                                                                                         

    分数

             

             

             

             

             

             

    频数

             

             

             

      

             

         甲款红茶分数在这一组的是:
     
    甲、乙两款红茶分数的平均数、众数、中位数如下表所示: 

                                                                                                                                          

    品种

    平均数

    众数

    中位数

             

             

             

             

             

             

    根据以上信息,回答下列问题:

    1. (1) 补全甲款红茶分数的频数分布直方图;
    2. (2) 表格中的值为 ,的值为 ;
    3. (3) 专业机构对两款红茶的条索、色泽、整碎、净度、内质、香气、滋味醇厚度、汤色、叶底来进行综合评分如下:甲款红茶分,乙款红茶分,若以这名消费者评分的平均数和专业机构的评分按照的比例确定最终成绩,可以认定 款红茶最终成绩更高填“甲”或“乙”
  • 24. (2023·海淀模拟) 如图,外一点,的切线,为切点,点上,连接
    1. (1) 求证:
    2. (2) 连接 , 若的半径为 , 求的长.
  • 25. (2023九上·北京市期中)  小明发现某乒乓球发球器有“直发式”与“间发式”两种模式,在“直发式”模式下,球从发球器出口到第一次接触台面的运动轨迹近似为一条抛物线;在“间发式”模式下,球从发球器出口到第一次接触台面的运动轨迹近似为一条直线,球第一次接触台面到第二次接触台面的运动轨迹近似为一条抛物线如图和图分别建立平面直角坐标系

    通过测量得到球距离台面高度单位:与球距离发球器出口的水平距离单位:的相关数据,如下表所示:
    直发式 

                                                                                                                                                                                      

             

             

             

        

             

        

        

        

        

             

        

        

        

        

        

        

             

             

             

        

    间发式 

                                                                                                                                                                                                                  

             

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

    根据以上信息,回答问题:

    1. (1) 表格中  ,  ;
    2. (2) 求“直发式”模式下,球第一次接触台面前的运动轨迹的解析式;
    3. (3) 若“直发式”模式下球第一次接触台面时距离出球点的水平距离为 , “间发式”模式下球第二次接触台面时距离出球点的水平距离为 , 则  填“”“”或“
  • 26. (2023·海淀模拟)  在平面直角坐标系中,已知抛物线过点
    1. (1) 求该抛物线的顶点坐标;
    2. (2) 过该抛物线与轴的交点作轴的垂线 , 将抛物线在轴右侧的部分沿直线翻折,其余部分保持不变,得到图形是图形上的点,设
      时,求的值;
      , 求的取值范围.
  • 27. (2023·海淀模拟) 如图,在中,的中点,的中点,连接将射线绕点逆时针旋转得到射线 , 过点交射线于点
    1. (1) 依题意补全图形;
      求证:
    2. (2) 连接 , 用等式表示线段之间的数量关系,并证明.
  • 28. (2023·海淀模拟)  在平面直角坐标系中,对于和点不与点重合给出如下定义:若边上分别存在点 , 点 , 使得点与点关于直线对称,则称点的“翻折点”.
    1. (1) 已知 
      若点与点重合,点与点重合,直接写出的“翻折点”的坐标;
      是线段上一动点,当的“翻折点”时,求长的取值范围;
    2. (2) 直线轴,轴分别交于两点,若存在以直线为对称轴,且斜边长为的等腰直角三角形,使得该三角形边上任意一点都为的“翻折点”,直接写出的取值范围.

微信扫码预览、分享更方便

试卷信息