思考:如图②,在矩形ABCD中,AB=4,BC=3,边CD在直线l上.将矩形ABCD沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,求点A经过的路径长.
【问题提出】车轮为什么要做成圆形, 这里面有什么数学原理?
【合作探究】
探究 组:如图1,圆形车轮半径为 ,其车轮轴心 到地面的距离始终为 .
探究 组:如图2,正方形车轮的轴心为 ,若正方形的边长为 ,求车轮轴心 最高点与最低点的高度差.
探究 组:如图3, 有一个破损的圆形车轮, 半径为 ,破损部分是一个弓形,其所对圆心角为 ,其车轮轴心为 ,让车轮在地上无滑动地滚动一周,求点 经过的路程.
探究发现:车辆的平稳关键看车轮轴心是否稳定.
【拓展延伸】如图4,分别以正三角形的三个顶点 为圆心,以正三角形的边长为半径作 圆弧,这个曲线图形叫做“莱洛三角形”.
延伸发现:“莱洛三角形”在滚动时始终位于一组平行线之间,因此放在其上的物体也能够保持平衡,但其车轴中心 并不稳定.