当前位置: 初中数学 /北师大版(2024) /九年级下册 /第三章 圆 /9 弧长及扇形的面积
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

【培优卷】3.9弧长及扇形的面积—2023-2024学年北师...

更新时间:2024-01-14 浏览次数:53 类型:同步测试
一、选择题
二、填空题
三、解答题
  • 13. 如图①,在Rt△ABC中,∠C=90°,∠A=60°,AC=3cm,边AB在直线l上.将Rt△ABC沿直线l作无滑动翻滚,当Rt△ABC翻滚一周时,求点A经过的路径长要解决这个问题,先要弄清在翻滚时点A经过的路径是什么Rt△ABC翻滚一周即为翻滚三次,第一次翻滚点A经过的路径长是以点B为圆心、AB为半径、圆心角是150°的的长,即为5πcm;第二次翻滚点A经过的路线长是以点C1为圆心、A1C1为半径圆心角是90°的的长,即为πcm;第三次翻滚时点A没动.所以Rt△ABC翻滚一周点A经过的路径是5π+π=π(cm).

    思考:如图②,在矩形ABCD中,AB=4,BC=3,边CD在直线l上.将矩形ABCD沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,求点A经过的路径长.

  • 14. (2023·河南) 小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点和点B为顶点,分别作菱形AOCD和菱形OBEF,点D,E在x轴上,以点O为圆心,OA长为半径作 , 连接BF.

    1. (1) 求k的值;
    2. (2) 求扇形AOC的半径及圆心角的度数;
    3. (3) 请直接写出图中阴影部分面积之和.
  • 15. (2022·江北模拟) 项目化学习:车轮的形状.

    【问题提出】车轮为什么要做成圆形, 这里面有什么数学原理?

    1. (1)

      【合作探究】

      探究 组:如图1,圆形车轮半径为 ,其车轮轴心 到地面的距离始终为                  
      探究 组:如图2,正方形车轮的轴心为 ,若正方形的边长为 ,求车轮轴心 最高点与最低点的高度差.
      探究 组:如图3, 有一个破损的圆形车轮, 半径为 ,破损部分是一个弓形,其所对圆心角为 ,其车轮轴心为 ,让车轮在地上无滑动地滚动一周,求点 经过的路程.

      探究发现:车辆的平稳关键看车轮轴心是否稳定.

    2. (2)

      【拓展延伸】如图4,分别以正三角形的三个顶点 为圆心,以正三角形的边长为半径作 圆弧,这个曲线图形叫做“莱洛三角形”.

      探究 组:使 “莱洛三角形” 沿水平方向向右滚动,在滚动过程中,其每时每刻都有 “最高点”,“中心点” 也在不断移动位置,那么在 “莱洛三角形” 滚动一周的过程中,其“最高点”和“中心点”所形成的图案大致是

      延伸发现:“莱洛三角形”在滚动时始终位于一组平行线之间,因此放在其上的物体也能够保持平衡,但其车轴中心 并不稳定.

微信扫码预览、分享更方便

试卷信息