当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山西省朔州市怀仁市2023-2024学年九年级上学期期中数学...

更新时间:2024-04-06 浏览次数:21 类型:期中考试
一、选择题(本大题共10小题,每题3分,总共30分,在每小题给出的四个选项中只有一项是符合题目要求,请选出并在答题卡上将该项涂黑)
二、填空题(每题3分共15分)
三、解答题(本大题共8个小题,共75分解答应写出文字说明,证明过程或演算步骤)
  • 17. (2023九上·怀仁期中) 在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).

    1. (1) 以O为中心作出△ABC的中心对称图形△A1B1C1 , 并写出点B1坐标;
    2. (2) 以格点P为旋转中心,将△ABC按顺时针方向旋转90°,得到△A′B′C′,且使点A的对应点A′的恰好落在△A1B1C1的内部格点上(不含△A1B1C1的边上),写出点P的坐标,并画出旋转后的△A′B′C′.
  • 18. (2023九上·怀仁期中) 阅读理解,并解决问题:

    “整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,比如整体代入,整体换元,整体约减,整体求和,整体构造,…,有些问题若从局部求解,采取各个击破的方式,很难解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,复杂问题也能迎刃而解.

    例:当代数式 的值为7时,求代数式 的值.

    解:因为 ,所以

    所以.

    以上方法是典型的整体代入法.

    请根据阅读材料,解决下列问题:

    1. (1) 已知 ,求 的值.
    2. (2) 我们知道方程 的解是 ,现给出另一个方程 ,则它的解是
  • 19. (2023九上·怀仁期中) 如图,的外接圆,的直径,过O于点E , 延长至点D , 连接 , 使

    1. (1) 求证:的切线;
    2. (2) 若 , 求的长.
  • 20. (2023九上·怀仁期中) 太原市某商场进价为100元的某品牌衣服,在销售期间发现,当销售单价定价为200元时,每天可卖出100件.临近2023年十一国庆,商家决定开启大促销活动,经过调研发现:当销售单价下降1元时,每天销售量增加4件.设该品牌衣服每件降价x元.
    1. (1) 求每天的销售量y(件)关于x(元)的函数关系式.
    2. (2) 在销售单价不低于150元的前提下,计算出该品牌衣服的销售单价定为多少元时,商场每天获利13600元.
  • 21. (2023九上·怀仁期中) 掷实心球是兰州市高中阶段学校招生体育考试的选考项目.如图1是一名女生投掷实心球,实心求行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,抛出时起点处高度为 , 当水平距离为3m时,实心球行进至最高点3m处.

    1. (1) 求y关于x的函数表达式;
    2. (2) 根据兰州市高中阶段学校招生体有考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.70m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.
  • 22. (2023九上·怀仁期中) 综合与实践 

    问题情境:在综合实践课上,李老师让同学们根据如下问题情境,写出两个数学结论:如图1,正方形的对角线交于点O , 点O又是正方形的一个顶点(正方形 的边长足够长),将正方形绕点O做旋转实验,交于点M交于点N.如图1“求实小组”写出的两个数学结论是:① ; ②.

    1. (1) 问题解决:

      请你证明“求实小组”所写的两个结论的正确性.

    2. (2) 类比探究:如图2

      解决完“求实小组”的两个问题后,老师让同学们继续探究,再提出新的问题﹔如图2,将正方形在图1的基础上旋转一定的角度,当的延长线交于点M 与的延长线交于点N , 则“求实小组”所写的两个结论是否仍然成立?请说明理由. 

  • 23. (2023九上·怀仁期中) 综合与探究

    如图,抛物线轴交于两点(点在点的左侧),与轴交于点 , 点是第一象限内抛物线上的一个动点.

        

    1. (1) 请直接写出点ABC的坐标;
    2. (2) 是否存在这样的点 , 使得?若存在,求出点的坐标;若不存在,请说明理由;
    3. (3) 若点是直线上一点,是否存在点 , 使得以点为顶点的三角形是等腰三角形?若存在,求出的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息