当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山西省晋中市寿阳县2023-2024学年九年级上学期数学月考...

更新时间:2024-05-17 浏览次数:22 类型:月考试卷
一、选择题(本大题共10个小题,每小题3分,共30分。在每个小题给出的四个选项中,只有一项符合题目要求,把正确答案的标号用2B铅笔填(涂)在答题卡内相应的位置上)
二、填空题(每小题3分,共15分)
三、解答题:本大题共8小题,共75分.解答时,应写出必要的文字说明、证明过程或演算步骤.
  • 16. (2023九上·寿阳月考) 解方程或计算
    1. (1) 解方程:
    2. (2) 解方程:
    3. (3) 计算:
    4. (4) 计算:
  • 17. (2023九上·寿阳月考) 如图,△ABC的顶点都在网格点上,点B的坐标(-2,1)
    1. (1) 以点O为位似中心,把△ABC按2:1放大在y轴的左侧,画出放大后的△DEF;
    2. (2) 点A的对应点D的坐标是   ;
    3. (3)  .
  • 18. (2023九上·寿阳月考)  如图,在平行四边形ABCD中,过点B作BE⊥CD于E,F为AE上一点,且∠BFE=∠C.
    1. (1) 求证:△ABF∽△EAD;
    2. (2) 若AB=3,AD=2,∠BAE=30°,求BF的长.
  • 19. (2023九上·寿阳月考)  如图,一次函数的图与反比例函数的图象交于A(﹣2,m),B(4,﹣2)两点,与x轴交于C点,过A作AD⊥x轴于D.

    1. (1) 求这两个函数的解析式;
    2. (2) 求△ADC的面积;
    3. (3) 根据图象直接写出不等式的解集.
  • 20. (2023九上·寿阳月考)  阅读与思考
    下面是小宇同学的一篇日记,请仔细阅读并完成相应的任务.

    在物理活动课上,我们“博学”小组的同学,参加了一次“探究电功率P与电阻R之间的函数关系”的活动.
    第一步,实验测量.根据物理知识,改变电阻R的大小,通过测量电路中的电流,计算电功率P.
    第二步,整理数据.

    R/Ω

    3

    6

    9

    12

    15

    P/W

    3

    1.5

    1

    0.75

    0.7

    第三步,描点连线.以R的数值为横坐标,对应P的数值为纵坐标在平面直角坐标系中描出以表中数值为坐标的各点,并用光滑的曲线顺次连接这些点.
    在数据分析时,我发现一个数据有错误,重新测量计算后,证明了我的猜想正确,并修改了表中这个数据.实验结束后,大家都有很多收获,每人都撰写了日记.

    任务:

    1. (1) 表格中错误的数据是,P与R的函数表达式为
    2. (2) 在平面直角坐标系中,画出P与R的函数图象;
    3. (3) 结合图象,直接写出P大于6W时R的取值范围.
  • 21. (2023九上·寿阳月考)  通常,路灯、台灯、手电筒……的光可以看成是从一个点发出的,在点光源的照射下,物体所产生的影称为中心投影.
    1. (1) 【画图操作】如图①,三根底部在同一直线上的旗杆直立在地面上,第一根、第二根旗杆在同一灯光下的影长如图所示.请在图中画出光源的位置及第三根旗杆在该灯光下的影长(不写画法);
    2. (2) 【数学思考】如图②,夜晚,小明从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为____ ;
      A . B . C . D .
    3. (3) 【解决问题】如图③,河对岸有一灯杆AB,在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向前进到达点F处测得自己的影长FG=4m.已知小明的身高为1.6m,求灯杆AB的高度.
  • 22. (2023九上·寿阳月考)  【定义】平面直角坐标系内的直角三角形如果满足以下两个条件:①两直角边平行于坐标轴;②斜边的两个顶点在同一反比例函数图象上.那么我们把这个直角三角形称为该反比例函数的“伴随直角三角形”.

    例如,在图中,Rt△ABC的边BC∥x轴,AC∥y轴,且点A,B在反比例函数

    的图象上,则Rt△ABC是反比例函数的“伴随直角三角形”.

    1. (1) 【理解】在Rt△ABC中,∠C=90°,点A,B,C的坐标分别为

      ①A(3,4),B(6,2),C(6,4);

      ②A(3,1),B(2,2),C(2,1);

      ③A(﹣1,2),B(1,﹣2),C(1,2).

      其中可能是某反比例函数的“伴随直角三角形”的是;(填序号)

    2. (2) 【应用】已知点C(2,﹣3)是反比例函数的“伴随直角三角形”的直角顶点,求直线AB的函数表达式;
    3. (3) 【提升】Rt△ABC是反比例函数的“伴随直角三角形”,且点A的坐标为(﹣4,﹣1),点B的坐标为(﹣1,﹣4).若△ABC平移后得到的△A'B'C',且△A'B'C'是反比例函数的“伴随直角三角形”,分别求点A',B'的坐标.
  • 23. (2023九上·寿阳月考)  如图1,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴负半轴、y轴正半轴上,AB、BC的长分别是方程的两个根.

    1. (1) 求点B的坐标;
    2. (2) 如图2,过点A且垂直于AC的直线交轴于点F,在直线AF上截取AD=AC,过点D作DE⊥轴于点E,求经过点D的反比例函数的关系式;
    3. (3) 在(2)的条件下,在y轴上是否存在一点P,使以D,E,P为顶点的三角形与△OAC相似?若存在,求出点P的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息