当前位置: 初中数学 /湘教版(2024) /九年级下册 /第1章 二次函数 /1.5 二次函数的应用
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2023-2024学年湘教版初中数学九年级下册 1.5 二次...

更新时间:2024-01-27 浏览次数:35 类型:同步测试
一、选择题
  • 1. (2023九上·江油期中) 用绳子围成周长为10(m)的矩形,记矩形的一边长为x(m),面积为S(m2).当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数关系是(    )
    A . 一次函数关系 B . 二次函数关系 C . 反比例函数关系 D . 正比例函数关系
  • 2. (2023九上·瓯海期中) 在一次炮弹发射演习中,记录到一门迫击炮发射的炮弹的飞行高度y米与飞行时间x秒的关系式为 , 当炮弹落到地面时,经过的时间为( )
    A . 40秒 B . 45秒 C . 50秒 D . 55秒
  • 3. (2023九上·前郭尔罗斯期中) 已知实心球运动的高度ym)与水平距离xm)之间的函数关系是y=-(x-1)2+4,则该同学此次投掷实心球的成绩是( )

    A . 2m B . 3m C . 3.5m D . 4m
  • 4. (2023九上·合肥月考) 据省统计局公布的数据,合肥市2023年第一度GDP总值约为26千亿元人民币,若我市第三季度GDP总值为y千亿元人民币,平均每个季度GDP增长的百分率为x , 则y关于x的函数表达式是( )
    A . B . C . D .
  • 5. (2023九上·北京市月考) 在特定条件下,篮球赛中进攻球员投球后,篮球的运行轨迹是开口向下的抛物线的一部分.“盖帽”是一种常见的防守手段,防守队员在篮球上升阶段将球拦截即为“盖帽”,而防守队员在篮球下降阶段将球拦截则属“违规”.对于某次投篮而言,如果忽略其他因素的影响,篮球处于上升阶段的水平距离越长,则被“盖帽”的可能性越大,收集几次篮球比赛的数据之后,某球员投篮可以简化为下述数学模型:如图所示,该球员的投篮出手点为P,篮框中心点为Q,他可以选择让篮球在运行途中经过A,B,C,D四个点中的某一点并命中Q,忽略其他因素的影响,那么被“盖帽”的可能性最大的线路是( ) 

     

    A . P→A→Q B . P→B→Q C . P→C→Q D . P→D→Ω
  • 6. 如果一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2 , 那么球弹起后又回到地面所花的时间t是( )
    A . 5秒 B . 10秒 C . 1秒 D . 2秒
  • 7. 如图,一名学生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=(x-10)(x+4),则铅球推出的距离OA=( )

    A . 14m B . 10m C . 7m D . 4m
  • 8. (2023九上·黄浦期中) 如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为 (  )

    A . 4 B . 10米 C . 4 D . 12米
二、填空题
三、解答题
  • 14. (2023九上·中江期中)  某宾馆有40个房间供游客居住,当每个房间每天的定价为200元时,房间会全部住满:当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.
    1. (1) 若每个房间定价增加30元,则这个宾馆这一天的利润为多少元?
    2. (2) 若宾馆某一天获利8400元,则房价定为多少元?
    3. (3) 房价定为多少时,宾馆的利润最大?
  • 15. (2023九上·安吉月考) 毛泽东故居景区有一商店销售一种纪念品,这种商品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于20元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.

    1. (1) 求yx之间的函数关系式,并写出自变量x的取值范围;
    2. (2) 求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
四、综合题
  • 16. (2022九上·定海月考) 商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元据此规律,请回答:
    1. (1) 商场日销售量增加件,每件商品盈利元(用含x的代数式表示);
    2. (2) 在上述条件不变,销售正常的情况下,设商场日盈利y元,求y与x的函数关系式;
    3. (3) 在(2)的条件下,每件商品降价多少元时,商场日盈利最高?
  • 17. 某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).

    1. (1) 若矩形养殖场的总面积为36 ,求此时x的值;
    2. (2) 当x为多少时,矩形养殖场的总面积最大?最大值为多少?

微信扫码预览、分享更方便

试卷信息