等级 | 不合格 | 合格 | ||
得分 | ||||
频数 | 12 | 48 | 24 |
求:
附:当时,.
参考数据: .
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
28.7 | 27.2 | 31.5 | 35.8 | 24.3 | 33.5 | 36.3 | 26.7 | 28.9 | 27.4 | 25.2 | 34.5 |
计算得:.
①用(1)中所求的样本均值与样本方差分别作为正态分布的均值与方差,求;
②护林员在做数据统计时,得出了如下结论:生长了4年的红松树的树干直径近似服从正态分布.在这个条件下,求 , 并判断护林员的结论是否正确,说明理由.
参考公式:若 , 则.
参考数据:.
参考数据:若X~N(μ , σ2),则P(μ-σ<X≤μ+σ)≈0.68,P(μ-2σ<X≤μ+2σ)≈0.95,P(μ-3σ<X≤μ+3σ)≈0.99.
参考公式及数据: , 其中 .
附参考数据:若,则①;②;③.
参加“强基培训” | 不参加“强基培训” | |
男生 | 25 | 35 |
女生 | 5 | 25 |
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
表一
编号 | 1 | 2 | 3 | 4 | 5 |
学习时间 | 30 | 40 | 50 | 60 | 70 |
数学成绩 | 65 | 78 | 85 | 99 | 108 |
表二
没有进步 | 有进步 | 合计 | |
参与周末在校自主学习 | 35 | 130 | 165 |
未参与周末不在校自主学习 | 25 | 30 | 55 |
合计 | 60 | 160 | 220 |
附: , . .
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
方案一:公司每天收取养殖场技术服务费40元,对于需要用药的每头猪收取药费2元,不需要用药的不收费;
方案二:公司每天收取养殖场技术服务费120元,若需要用药的猪不超过45头,不另外收费,若需要用药的猪超过45头,超过的部分每头猪收费标准为8元.
9月份 | 10月份 | 合计 | |
未发病 | 40 | 85 | 125 |
发病 | 65 | 20 | 85 |
合计 | 105 | 105 | 210 |
根据以上列联表判断是否有的把握认为猪未发病与该生物医药公司提供技术服务有关.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
附参考数据:若,则①;②;③.
未获得区前三名及以上名次 | 获得区前三名及以上名次 | |
中学 | 11 | 6 |
中学 | 34 | 9 |
附: , 其中 .
①求出X的分布列与期望;
②证明:在n足够大时,随机变量X的方差小于 .
(已知对于正态分布 , P随X变化关系可表示为)
附: , , .
①估计5000名学生中成绩介于120分到300分之间有多少人;
②某校对外宣传“我校200人参与此次网络测试,有10名同学获得430分以上的高分”,请结合统计学知识分析上述宣传语的可信度.
年龄 | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
人数 | 4 | 5 | 8 | 5 | 3 |
年龄 | [45,50) | [50,55) | [55,60) | [60,65) | [65,70) |
人数 | 6 | 7 | 3 | 5 | 4 |
年龄在[25,30),[55,60)的被调查者中赞成人数分别是3人和2人,现从这两组的被调查者中各随机选取2人,进行跟踪调查.