当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2024年人教版中考数学二轮复习 专题8 一元二次方程(解答...

更新时间:2024-02-23 浏览次数:80 类型:二轮复习
一、解答题
  • 1. 某种病毒在其生长过程中,在保证自身稳定性的前提下,每隔半小时繁殖出若干个新的病毒,如果由最初的一个病毒经过1h后变成了841个病毒,求一个病毒每半小时繁殖出多少个病毒.
  • 2. (2024九上·中山期中) 某种音乐播放器MP3原来每只售价400元,经过连续两次降价后,现在每只售价为256元.求平均每次降价的百分率.

  • 3. 某公司今年销售一种产品,1月获得利润20万元,由于产品畅销,利润逐月增加,3月的利润比2月的利润增加4.8万元,假设该产品每月利润的增长率相同,求这个增长率.
  • 4. 某种计算机CPU(中央处理器)经过7,8月连续两次降价,每片售价由2 500元降到了1600元.已知每次降价的百分率相同.
    1. (1) 求每次降价的百分率.
    2. (2) 若9月继续保持相同的百分率降价,则这款CPU在9月的售价为多少元?
  • 5. (2024九上·郴州期末) 已知关于x的一元二次方程
    1. (1) 求证:不论k为何值时,此方程总有两个实数根;
    2. (2) 当方程的一个根为 时,求方程的另一个根x2及k的值.
  • 6. 小明同学在寒假社会调查实践活动期间,对某罐头加工厂进行采访,获得了该厂去年的部分生产信息如下:

    ①该厂1月罐头加工量为a吨.

    ②该厂3月的加工量比1月增长了44%.

    ③该厂第一季度共加工罐头182吨.

    ④该厂从4月开始设备整修更新,加工量每月按相同的百分率开始下降.

    ⑤6月设备整修更新完毕,此月加工量为1月的2.1倍,与5月相比增长了46.68吨.

    利用以上信息,求:

    1. (1) 该厂第一季度加工量的月平均增长率.
    2. (2) a的值.
    3. (3) 该厂第二季度的总加工量
  • 7. 某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨
    1. (1) 求4月份再生纸的产量;
    2. (2) 若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加m%.5月份每吨再生纸的利润比上月增加 %,则5月份再生纸项目月利润达到66万元求m的值;
    3. (3) 若4月份每吨再生纸的利润为1 200元,4至6月每吨再生纸利润的月平均增长率与6月再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润.
  • 8. 已知关于的二次函数.
    1. (1) 该函数的图象与轴只有一个交点,求之间的关系.
    2. (2) 若 , 当时,的增大而增大,求的取值范囲.
    3. (3) 若 , 该函数的象不经过第三累限,求的取值范围.
  • 9. (2023九上·南皮期中) 如图所示,中,.点从点开始沿边向以1cm/s的速度移动,点点开始沿边向点以2cm/s的速度移动.分别从同时出发.

    1. (1) 经过几秒,间的距离等于6cm?
    2. (2) 线段能否将分成面积相等的两部分?若能,求出运动时间;若不能,说明理由.
    3. (3) 几秒时,相似?
  • 10. (2023九上·青白江期中) 如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知 , 这时我们把关于x的形如的一元二次方程称为“勾系一元二次方程”.

    请解决下列问题:

    1. (1) 写出一个“勾系一元二次方程”;
    2. (2) 求证:关于x的“勾系一元二次方程” 必有实数根;
    3. (3) 若x=﹣1是“勾系一元二次方程”的一个根,且四边形ACDE的周长是6 , 求△ABC面积.
二、综合题
  • 11. 如图,老李想用长为的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈 , 并在边上留一个宽的门(建在处,另用其他材料).

      

    1. (1) 当羊圈的长和宽分别为多少米时,能围成一个面积为640的羊圈?
    2. (2) 羊圈的面积能达到吗?如果能,请你给出设计方案;如果不能,请说明理由.
  • 12. (2023九上·洪山月考) 某农场要建一个饲养场(矩形 )两面靠现有墙( 位置的墙最大可用长度为21米, 位置的墙最大可用长度为15米),另两边用木栏围成,中间也用木栏隔开,分成两个场地及一处通道,并在如图所示的三处各留1米宽的门(不用木栏).建成后木栏总长45米,设饲养场(矩形 )的一边 长为x米.

    1. (1) 饲养场另一边 米(用含x的代数式表示);
    2. (2) 若饲养场 的面积为180平方米,求x的值;
    3. (3) 饲养场 的面积能围成面积比 更大的吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.
  • 13. (2023九上·市南区期中) 如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的

    1. (1) 求配色条纹的宽度;
    2. (2) 如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.
  • 14. (2023九上·商河月考) 2020年,某家庭纯收入为2500元,通过政府产业扶持,发展养殖业,到2022年,家庭收入为3600元.
    1. (1) 求该家庭2020年到2022年人均收入的年平均增长率.
    2. (2) 若年平均增长率保持不变,2023年家庭年收入是否达到4200元?
  • 15. (2023八上·洪洞月考) 如图所示,四边形为矩形, , 若点QA点出发沿的速度向D运动,PB点出发沿的速度向A运动,如果PQ分别同时出发,当一个点到达终点时,另一点也同时停止.设运动的时间为

      

    1. (1) 当为何值时,的面积为
    2. (2) 是否存在t使为等腰三角形?若存在,求出t值;若不存在,请说明理由.
  • 16. (2023九上·苏州开学考) 已知关于x的一元二次方程:x2-(2k+1)x+4(k-)=0.
    1. (1) 求证:这个方程总有两个实数根;
    2. (2) 若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.
  • 17. (2023九上·长沙月考) 定义:当取任意实数,函数值始终不小于一个常数时,称这个函数为“恒心函数”,这个常数称为“恒心值”.
    1. (1) 判断:函数是否为“恒心函数”,如果是,求出此时的“恒心值”,如果不是,请说明理由;
    2. (2) 已知“恒心函数”

      ①当时,此时的恒心值为         

      ②若三个整数的和为12,且 , 求的最大值与最小值,并求出此时相应的的值;

    3. (3) “恒心函数”的恒心值为0,且恒成立,求的取值范围.

微信扫码预览、分享更方便

试卷信息