当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

备考2024年浙江中考数学一轮复习专题11.1一元二次方程 ...

更新时间:2024-02-24 浏览次数:88 类型:一轮复习
一、选择题(每题3分,共30分)
二、填空题(每题3分,共18分)
三、计算题(共2题,共15分)
四、解答题(共5题,共28分)
  • 19. 若关于x的一元二次方程-k-1=0与仅有一个公共的实数根,求k的值和公共的实数根。
  • 20. 已知a,b是整数,关于x的方程x2-ax+3-6=0有两个不相等的实数根,x2+(6-a)x+7-b=0有两个相等的实数根,x2+(4-a)x+5-b=0没有实数根,求a,b的值.
  • 21. (2023九上·修水期中) 已知关于x的方程
    1. (1) 求证:无论取何实数值,方程总有实数根.
    2. (2) 若等腰三角形的一边长 , 另两边长恰好是这个方程的两个根,求的周长.
  • 22. (2024九上·沅江开学考) 如图,用一段77米的篱笆围成三个一边靠墙、大小相同的矩形羊圈,每个矩形都有一个1米的门,墙的最大可用长度为30米.

    1. (1) 如果羊圈的总面积为300平方米,求边 的长;
    2. (2) 羊圈的总面积能为500平方米吗?若能,请求出边 的长;若不能,说明理由.
  • 23. (2023九上·东港月考)  年卡塔尔世界杯足球赛开战,很多商家都紧紧把握这一商机,赛场内外随处可见“中国制造”的身影,某商家销售一批“中国制造”的吉祥物“拉伊卜”毛绒玩具,已知每个毛绒玩具“拉伊卜”的成本为元,销售单价不低于成本价,且不高于成本价的倍,在销售过程中发现,毛绒玩具“拉伊卜”每天的销售量与销售单价满足如图所示的一次函数关系.
    1. (1) 求的函数关系式,并直接写出自变量的取值范围;
    2. (2) 每个毛绒玩具“拉伊卜”的售价为多少元时,该商家每天的销售利润为元?
    3. (3) 当毛绒玩具“拉伊卜”的销售单价为多少元时,该商家每天获得的利润最大?最大利润是多少元?
五、实践探究题(共3题,共29分)
  • 24. (2023九上·青白江期中) 如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知 , 这时我们把关于x的形如的一元二次方程称为“勾系一元二次方程”.

    请解决下列问题:

    1. (1) 写出一个“勾系一元二次方程”;
    2. (2) 求证:关于x的“勾系一元二次方程” 必有实数根;
    3. (3) 若x=﹣1是“勾系一元二次方程”的一个根,且四边形ACDE的周长是6 , 求△ABC面积.
  • 25. (2023九上·邵阳月考) 阅读下列材料:
    配方法是初中数学中经常用到的一个重要方法,学好配方法对我们学习数学有很大的帮助所谓配方,就是将某一个多项式变形为一个完全平方式,但变形一定要保证恒等,即配方前后式子的值不变.
    例如:
    解方程 , 则有 , 解得
    已知 , 求的值,则有 , 解得
    根据以上材料解答下列各题:
    1. (1) 若 , 求的值;
    2. (2) 无论取何值,关于的一元二次方程总有两个不相等的实数根;
    3. (3) 解方程:
    4. (4) 若表示的三边长,且 , 试判断的形状,并说明理由.
  • 26.

    如何利用闲置纸板箱制作储物盒

     

     

    1

    如图1是小琴家需要设置储物盒的区域,该区域可以近似看成一个长方体,底面尺寸如图2所示.

     

     

    2

    如图3、图4是利用闲置纸板箱拆解出的①,②两种一边均为a(cm)(a<50)的矩形纸板.

    纸板①(单位:cm)

    纸板②(单位:cm)

    小琴分别将纸板①和②以不同的方式制作储物盒.

    纸板①的制作方式

    纸板②的制作方式

    裁去角上4个相同的小正方形,折成一个无盖长方体储物盒.

    将纸片四个角裁去4个相同的小矩形,折成一个有盖的长方体储物盒。

    1

     

    熟悉材料

    ⑴若按照纸板①的制作方式制成的储物盒恰好完全放入储物区域,则长方形纸板的宽a=         cm.

     

     

     

    2

    利用目标1计算所得的数据a,进行进一步探究.

     

    初步应用

    ⑵按照纸板①的制作方式,为了更方便地放入或取出储物盒,盒子四周需要留出一定的空间,当储物盒的底面积是936cm²时,求储物盒的容积.

     

     

     

    储物收纳

    ⑶按照纸板②的制作方式制作储物盒,EF和HG两边恰好重合且无重叠部分,盒子的底面积为702cm².家里一个玩具机械狗的尺寸如图所示,请通过计算判断该机械狗能否完全放入储物盒.

微信扫码预览、分享更方便

试卷信息