当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2023年湖北省中考数学真题分类汇编:02 方程和不等式

更新时间:2024-03-20 浏览次数:55 类型:二轮复习
一、选择题
二、填空题
三、计算题
四、解答题
  • 13. (2023·恩施) 为积极响应州政府“悦享成长·书香恩施”的号召,学校组织150名学生参加朗诵比赛,因活动需要,计划给每个学生购买一套服装.经市场调查得知,购买1套男装和1套女装共需220元;购买6套男装与购买5套女装的费用相同.
    1. (1) 男装、女装的单价各是多少?
    2. (2) 如果参加活动的男生人数不超过女生人数的 , 购买服装的总费用不超过17000元,那么学校有几种购买方案?怎样购买才能使费用最低,最低费用是多少?
  • 14. (2023·黄石) 关于的一元二次方程 , 当时,该方程的正根称为黄金分割数宽与长的比是黄金分割数的矩形叫做黄金矩形,希腊的帕特农神庙采用的就是黄金矩形的设计;我国著名数学家华罗庚的优选法中也应用到了黄金分割数.
    1. (1) 求黄金分割数;
    2. (2) 已知实数满足: , 且 , 求的值;
    3. (3) 已知两个不相等的实数满足: , 求的值.
五、综合题
  • 15. (2024九下·牟平期中) 为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.
    1. (1) 求豆沙粽和肉粽的单价;
    2. (2) 超市为了促销,购买粽子达20个及以上时实行优惠,下表列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);

       

      豆沙粽数量

      肉粽数量

      付款金额

      小欢妈妈

      20

      30

      270

      小乐妈妈

      30

      20

      230

      ①根据上表,求豆沙粽和肉粽优惠后的单价;

      ②为进一步提升粽子的销量,超市将两种粽子打包成A,B两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A,B两种包装中分别有m个豆沙粽,m个肉粽,A包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A,B两种包装的销量分别为包,包,A,B两种包装的销售总额为17280元.求m的值.

  • 16. (2023·武汉) 解不等式组请按下列步骤完成解答.
    1. (1) 解不等式①,得
    2. (2) 解不等式②,得
    3. (3) 把不等式①和②的解集在数轴上表示出来;

    4. (4) 原不等式组的解集是
  • 17. (2023·黄冈) 加强劳动教育,落实五育并举.孝礼中学在当地政府的支持下,建成了一处劳动实践基地.2023年计划将其中的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y(单位;元/)与其种植面积x(单位:)的函数关系如图所示,其中;乙种蔬菜的种植成本为50元/

    1. (1) 当时,元/
    2. (2) 设2023年甲乙两种蔬菜总种植成本为W元,如何分配两种蔬菜的种植面积,使W最小?
    3. (3) 学校计划今后每年在这土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下降,若甲种蔬菜种植成本平均每年下降 , 乙种蔬菜种植成本平均每年下降 , 当a为何值时,2025年的总种植成本为元?
  • 18. 创建文明城市,构建美好家园.为提高垃圾分类意识,幸福社区决定采购A,B两种型号的新型垃圾桶.若购买3个A型垃圾桶和4个B型垃圾桶共需要580元,购买6个A型垃圾桶和5个B型垃圾桶共需要860元.
    1. (1) 求两种型号垃圾桶的单价;
    2. (2) 若需购买A,B两种型号的垃圾桶共200个,总费用不超过15000元,至少需购买A型垃圾桶多少个?
  • 19. (2023·鄂州) 1号探测气球从海拔10m处出发,以1m/min的速度竖直上升.与此同时,2号探测气球从海拔20m处出发,以am/min的速度竖直上升.两个气球都上升了1h.1号、2号气球所在位置的海拔(单位:m)与上升时间x(单位:min)的函数关系如图所示.请根据图象回答下列问题:

    1. (1) a=,b
    2. (2) 请分别求出与x的函数关系式;
    3. (3) 当上升多长时间时,两个气球的海拔竖直高度差为5m?
  • 20. 已知关于x的一元二次方程
    1. (1) 求证:无论m取何值时,方程都有两个不相等的实数根;
    2. (2) 设该方程的两个实数根为a,b,若 , 求m的值.
  • 21. 已知关于的一元二次方程有两个不相等的实数根.
    1. (1) 求的取值范围;
    2. (2) 当时,用配方法解方程.
  • 22. (2024九下·蓬莱模拟) 荆州古城旁“荆街”某商铺打算购进A,B两种文创饰品对游客销售.已知1400元采购A种的件数是630元采购B种件数的2倍,A种的进价比B种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购B种的件数不低于390件,不超过A种件数的4倍.
    1. (1) 求A,B饰品每件的进价分别为多少元?
    2. (2) 若采购这两种饰品只有一种情况可优惠,即一次性采购A种超过150件时,A种超过的部分按进价打6折.设购进A种饰品x件,①求x的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.

微信扫码预览、分享更方便

试卷信息