当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广东省佛山市高明区重点中学2023-2024学年高三上学期数...

更新时间:2024-04-29 浏览次数:21 类型:月考试卷
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
  • 9. (2024高三上·高明月考) 已知mnl为空间中三条不同的直线,αβγδ为空间中四个不同的平面,则下列说法中正确的是( )
    A . mlnl , 则mn B . 已知αβ=lβγ=mγα=n , 若lm=P , 则Pn C . mαmβαγ , 则βγ D . αβγαδβ , 则γδ
  • 10. (2024高三上·高明月考) 在声学中,音量被定义为 , 其中Lp是音量(单位为dB),p0是基准声压,为2×10-5Pa,p是实际声音压强.人耳能听到的最小音量称为听觉下限阈值.经过研究表明,人耳对于不同频率的声音有不同的听觉下限阈值,如图所示,其中240Hz对应的听觉下限阈值为20dB,1000Hz对应的听觉下限阈值为0dB,则下列结论正确的是( )

    A . 音量同为20dB的声音,1000~10000Hz的高频比30~100Hz的低频更容易被人们听到 B . 听觉下限阈值随声音频率的增大而减小 C . 240Hz的听觉下限阈值的实际声压为0.002Pa D . 240Hz的听觉下限阈值的实际声压为1000Hz的听觉下限阈值实际声压的10倍
  • 11. (2024高三上·高明月考) 已知一组2nn∈N*)个数据:a1a2 , …,a2n , 满足a1a2≤…≤a2n , 平均值为M , 中位数为N , 方差为s2 , 则( )
    A . anMan+1 B . anNan+1 C . 函数的最小值为2ns2 D . a1a2 , …,a2n成等差数列,则M=N
三、填空题:本题共3小题,每小题5分,共15分.
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
  • 15. (2024高三上·高明月考) 已知△ABC的内角ABC的对边分别为abc , 2sinAsinBcosC=sin2C.
    1. (1) 求的值;
    2. (2) 若c=2,求△ABC的面积S的最大值.
  • 16. (2024高三上·高明月考) 铅球起源于古代人类用石块猎取禽兽或防御攻击的活动.现代推铅球始于14世纪40年代欧洲炮兵闲暇期间推掷炮弹的游戏和比赛,后逐渐形成体育运动项目.男、女铅球分别于1896年、1948年被列为奥运会比赛项目.为了更好地在中小学生中推广推铅球这项体育运动,某教育局对该市管辖内的42所高中的所有高一男生进行了推铅球测试,测试结果表明所有高一男生的成绩X(单位:米)近似服从正态分布N(9,σ2),且.
    1. (1) 若从所有高一男生中随机挑选1人,求他的推铅球测试成绩在(8,10)范围内的概率;
    2. (2) 从该市所有高一男生中随机挑选4人,记这4人中推铅球测试成绩在(8,10)范围内的人数为Y , 求Y的分布列和方差;
    3. (3) 某高一男生进行推铅球训练,若推nn为正整数)次铅球,期望至少有21次成绩在(8,10)范围内,请估计n的最小值.
  • 17. (2024高三上·高明月考) 如图1,在平面五边形ABCDE中,ADBCAD=2BC=4, , ∠ABC=90°,△ADE是等边三角形.现将△ADE沿AD折起,记折后的点EE' , 连接E'BE'C , 得到四棱锥E'ABCD , 如图2.

    1. (1) 证明:BCCE'
    2. (2) 若平面E'CD⊥平面ABCD , 求二面角ADE'B的余弦值.
  • 18. (2024高三上·高明月考) 已知数列{an}的前n项和为Sna1=3,且Sn+1=2Snn+3.数列{bn}满足b1=1,
    1. (1) 求数列{an},{bn}的通项公式;
    2. (2) 将数列{bn}中的项按从小到大的顺序依次插入数列{an}中,在任意的akak+1之间插入2k-1项,从而构成一个新数列{cn},求数列{cn}的前100项和.
  • 19. (2024高三上·高明月考) 某学校有4000名学生,假设携带乙肝病毒的学生占m%,某体检机构通过抽血的方法筛查乙肝病毒携带者,如果对每个人的血样逐一化验,就需要化验4000次.为减轻化验工作量,统计专家给出了一种化验方法:随机按照k个人进行分组,将各组k个人的血样混合再化验,如果混合血样呈阴性,说明这k个人全部阴性;如果混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需对该组每个人的血样再分别化验一次.假设每人的血样化验结果呈阴性还是阳性相互独立.
    1. (1) 若m=0.4,记每人血样化验的次数为X , 求当k取何值时,X的数学期望最小,并求化验总次数;
    2. (2) 若m=0.8,设每人血样单独化验一次的费用为5元,k个人混合化验一次的费用为k+4元.求当k取何值时,每人血样化验费用的数学期望最小,并求化验总费用.

      参考数据及公式:n∈N*n≥2,|x|≤0.01).

微信扫码预览、分享更方便

试卷信息