一、选择题(共12小题,每小题3分,共36分. 在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)
-
A .
B . 0
C . 1
D . 2
-
-
A . 2,2,5
B . 2,3,5
C . 2,3,6
D . 2,3,4
-
4.
(2024八上·青秀月考)
某种芯片每个探针单元的的重量为0.0000046g,数据“0.0000046”用科学记数法表示为( )
A . 46×10-7
B . 4.6×10-7
C . 4.6×10-6
D . 0.46×10-5
-
5.
(2024八上·青秀月考)
如图,
A、
F、
C、
D在一条直线上,
,
和
是对应角,
BC和
EF是对应边,
,
. 则线段
FC的长为( )
A . 1
B . 1.5
C . 2
D . 2.5
-
A .
B . 9
C .
D . 12
-
-
8.
(2024八上·青秀月考)
如图,要测量池塘两岸相对的两点
A ,
B之间的距离,可以在池塘外取
AB的垂线
BF上两点
C ,
D , 使
, 再画出
BF的垂线
DE , 使点
E与
A ,
C在同一条直线上,这时,可得
, 这时测得
DE的长就是
AB的长. 判定
最直接的依据是( )
A . ASA B.SASC.SSS D.HL
-
9.
(2024八上·青秀月考)
在新农村建设中,为了美化乡村,八年级同学积极参加植树造林,已知八(1)班每天比八(2)班每天多植5棵树,八(1)班植80棵树所用的天数与八(2)班植70棵树所用的天数相等. 若设八(1)班每天植
x棵,根据题意列出的方程是( )
-
10.
(2024八上·青秀月考)
如图,在
中,
D ,
E分别是
AB、
AC上一点,
BE、
CD相交于点
F , 若
,
,
, 则
的度数为( )
A . 50°
B . 60°
C . 120°
D . 130°
-
11.
(2024八上·青秀月考)
对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如利用图1可以得到
,那么利用图2所得到的数学等式是( )
-
A . 15
B . 12
C . 7.5
D . 6
二、填空题(本大题共6小题,每小题2分,共12分)
-
-
-
-
-
17.
(2024八上·青秀月考)
如图,在
x、
y轴上分别截取
OA、
OB , 使
, 再分别以点
A、B为圆心,以大于
的长度为半径画弧,两弧交于点
C. 若
C的坐标为
, 则
.
-
18.
(2024八上·青秀月考)
已知一张三角形纸片
ABC(如图甲),其中
,
. 将纸片沿
DE折叠,使点
A与点
B重合(如图乙)时,
;再将纸片沿
EF折叠,使得点
C恰好与
BE边上的
G点重合,折痕为
EF(如例图丙),则△BFG的周长为
(用含
a的式子表示).
甲 乙 丙
三、解答题(本△BFG大题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤.)
-
-
-
-
-
(2)
作出
关于直线
m对称的
, 若点
为
内部任意一点,请直接写出这个点在
内部对应点
Q的坐标.
-
-
(1)
尺规作图:作AC的垂直平分线,垂足为点F , 交BC于点E(保留作图痕迹,不写作法);
-
(2)
在(1)的条件下,连接
AE , 若
, 且
,
, 求
的面积.
-
23.
(2024八上·青秀月考)
哈工大图书馆新进一批图书,张强和李明两位图书员负责整理图书,已知张强3小时清点完这批图书的一半,李明加入清点另一半图书的工作,两人合作1.2小时清点完另一半图书;
-
-
(2)
经过一段时间,这批图书破损严重,哈工大图书馆决定在致知书店购买甲、乙两种图书共120本进行补充,该书店每本甲种图书的利润为5元,每本乙种图书的利润为10元. 如果此批图书全部售出后所得利润不低于950元,那么该书店至少需要卖出乙种图书多少本?
-
-
-
(2)
连接
OC , 当
时,求点
C的坐标;
-
(3)
在(2)的条件下,猜想线段OA和线段OB的数量关系,并说明理由.
-
25.
(2024八上·青秀月考)
综合与实践:
数形结合思想是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想. 我们常利用数形结合思想,借助形的几何直观性来阐明数之间某种关系,如:探索整式乘法的一些法则和公式.
探索整式乘法的一些法则和公式.
-
(1)
探究一:
将图1的阴影部分沿虚线剪开后,拼成图2的形状,拼图前后图形的面积不变,因此可得一个多项式的分解因式.
-
(2)
探究二:类似地,我们可以借助一个棱长为
a的大正方体进行以下探索:
在大正方体一角截去一个棱长为的小正方体,如图3所示,则得到的几何体的体积为;
-
(3)
将图3中的几何体分割成三个长方体①、②、③,如图4,图5所示,
,
,
,
长方形①的体积为
. 类似地,长方体②的体积为
,长方体③的体积为
;(结果不需要化简)
-
(4)
用不同的方法表示图3中几何体的体积,可以得到的恒等式(将一个多项式因式分解)为.
-
(5)
问题应用:利用上面的结论,解决问题:已知
,
, 求
的值.
-
-
(1)
如图1,若
CE平分
, 求证:
;
-
(2)
如图2,若
E为
AB中点,求证
CE平分
;
-
(3)
如图3,在(2)条件下,以
E为顶点作
,
的两边与
BC、
DC分别交于
F、
H ,
,
,
,
直接写出HF的长.