例题:已知二次三项式有一个因式是 , 求另一个因式以及m的值.
解:设另一个因式为 , 则 ,
即 ,
∴ , 解得 .
故另一个因式为 , m的值为-21.
仿照上面的方法解答下面问题:
已知二次三项式有一个因式是x-5,求另一个因式以及k的值.
整体思想是数学解题中常用的一种思想方法:
下面是某同学对多项式进行因式分解的过程.
解:设
原式(第一步)
(第二步)
(第三步)
(第四步)
回答下列问题:
.提取公因式 .平方差公式 .完全平方公式
因式分解: ,
解:令 , 则原式: ,
再将“A”还原,得原式 ,
上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:
例如:
②十字相乘法:十字相乘法能用于二次三项式的分解因式.
分解步骤:1.分解二次项,所得结果分别写在十字交叉线的左上角和左下角;2.分解常数项,所得结果分别写在十字交叉线的右上角和右下角;3.交叉相乘,求代数和,使其等于一次项;4.观察得出原二次三项式的两个因式,并表示出分解结果.这种分解方法叫作十字相乘法.
例如: 分析:
观察得出:两个因式分别为与
解:原式
③添项拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法叫作拆项法.
例如: .
①(分组分解法);
②(十字相乘法);