当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

重庆市沙坪坝区2023-2024学年九年级上学期期末数学试题

更新时间:2024-05-07 浏览次数:22 类型:期末考试
一、选择题:(本大题10个小题,每小题4分,共40分)
二、填空题:(本大题8个小题,每小题4分,共32分)
三、解答题:(本大题8个小题,共78分)
  • 20. (2024九上·沙坪坝期末) 学习了平行四边形后,小庆进行了拓展性探究.他发现,过一个顶点同时向平行四边形的两边作垂线段,如果这两条垂线段相等,那么这个平行四边行是菱形.其解决问题的思路是通过证明平行四边行的一组邻边所在的三角形全等即可得出结论.

    请根据他的思路完成以下作图和填空.

    用直尺和圆规,过点C边上的垂线,垂足为点F . (只保留作图痕迹)

    已知:如图,在中,于点E于点F

    求证:四边形是菱形.

    证明:∵四边形是平行四边形,

        ▲        

    又∵

    又∵    ▲        

        ▲        

        ▲        

    又∵四边形是平行四边形,

    ∴四边形是菱形.

  • 21. (2024九上·沙坪坝期末) 科教兴国,科普为先.某校组织七、八年级学生参加了“科普赋能,智行未来”科普知识竞赛.现从该校七、八年级学生中分别随机抽取了20名学生的竞赛成绩进行整理,描述和分析(成绩得分用x表示,共分为五组: , 下面给出了部分信息:

    七年级20名学生的成绩是:69,76,78,79,82,84,85,86,86,86,86,88,88,90,92,92,95,98,100,100.

    八年级20名学生的成绩在C组中的数据是:83,85,85,86,87,89,89,89,89.

    七、八两年级抽取的学生成绩数据统计表

    班级

    平均数

    中位数

    众数

    满分率

    七年级

    87

    86

    a

    八年级

    87

    b

    89

    八年级抽取的学生成绩扇形统计图

    根据以上信息,解答下列问题:

    1. (1) 直接写出图表中abm的值:
    2. (2) 根据以上数据,你认为七年级和八年级中哪个年级的学生掌握科普知识较好?请说明理由(一条理由即可);
    3. (3) 该校七年级有400名学生和八年级有500名学生参加了此次科普知识竞赛,请估计两个年级成绩达到90分及以上的学生共有多少人?
  • 22. (2024九上·重庆市月考) 山城步道是重庆的特色,市民可以在步道里面休闲、运动,享受美好生活.半山崖线步道沙坪坝段全长2000米,由甲、乙两个工程队合作完成,甲工程队修建的步道长度比乙工程队修建的步道长度的2倍少400米.
    1. (1) 求甲、乙两工程队各修建步道多少米?
    2. (2) 实际修建过程中,甲工程队每天比乙工程队多修5米,最终甲工程队完成任务时间是乙工程队完成任务时间的倍,则甲工程队每天修建步道多少米?
  • 23. (2024九上·沙坪坝期末) 如图,在中, . 点中点,动点分别以每秒1个单位长度的速度同时运动,点从点出发,沿直线运动,到达点时停止运动,点从点出发,沿折线运动,到达点时停止运动.设点 , 点的运动时间为秒,点之间的距离为

    1. (1) 请直接写出yx之间的函数表达式并注明自变量x的取值范围;
    2. (2) 在给定的平面直角坐标系中画出这个函数图象,并写出该函数的一条性质;
    3. (3) 结合函数图象,写出PQ两点相距2个位长度时x的值.
  • 24. (2024九上·沙坪坝期末) 为了满足市民健身需求,市政部门在某公园内沿湖边修建了四边形循环步道,如图,经勘测,点在点的正南方,点在点的正东方,点在点的东北方向,点在点的南偏西方向,点在点的北偏西方向米处.(参考数据:

    1. (1) 求的长度(结果精确到米);
    2. (2) 小沙准备从点跑步到点去见小渝,小沙决定选择一条较短线路,请计算说明小沙应选择路线,还是路线?
  • 25. (2024九上·沙坪坝期末) 如图,在平面直角坐标系中,抛物线x轴于B两点,交y轴于点

    1. (1) 求抛物线的表达式;
    2. (2) 点P是直线上方抛物线上的一动点,过点Py轴的平行线交于点E , 过点P的平行线交x轴于点F , 求的最大值及此时点P的坐标;
    3. (3) 将该抛物线y沿射线方向平移个单位长度得到新抛物线 , 点G是新抛物线的顶点,点M为新抛物线的对称轴上一点,在平面内确定一点N , 使得以点CGMN为顶点的四边形是以为边的菱形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.
  • 26. (2024九上·沙坪坝期末) 中,D是边上一动点,E外一点,连接

    1. (1) 如图1, , 若 , 求的度数;
    2. (2) 如图2, , 过点D交于点F , 若 , 求证:
    3. (3) 如图3, , 延长的延长线于点F于点G , 点D是直线上一动点,将沿翻折得 , 连接 , 取的中点M , 连接 , 若 , 当线段取得最大值时,请直接写出的值.

微信扫码预览、分享更方便

试卷信息