当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广西南宁市青秀区第十四中2023-2024学年九年级下学期数...

更新时间:2024-04-23 浏览次数:12 类型:开学考试
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的、用2B铅笔把答题卡上对应题目的答案标号涂黑.)
二、填空题(本大题共6小题,每小题2分,共12分.)
三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)
  • 21. (2024九下·青秀开学考) 下面是小明同学要借助无刻度的直尺和圆规作图,来证明三角形内角和等于180°这一命题,请你帮他补充完整.

    命题:三角形的三个内角的和等于

    已知:如图1.

    求证:

    证明:如图2.延长BA到 , 以AC为边,在其右侧尺规作

    ∵∠CAE=∠C.

    ∴……

  • 22. (2024九下·青秀开学考) 为落实立德树人的根本任务,着力培养学生的核心素养.某中学选取了A“广西药用植物园”,B.“广西民族傅物馆”,C.“广西科技馆”,D.“南宁园博园”四个研学基地进行研学.为了解学生对以上研学基地的喜爱情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),并将调查结果绘制成了两幅不完整的统计图(如图所示).

    请根据统计图中的信息解答下列问题:

    1. (1) 请你求出本次调查抽取学生的总人数,并将上面的条形统计图补充完整;
    2. (2) 若该校共有650名学生,请你估计选择研学基地A的学生人数;
    3. (3) 学校想从选择研学基地B的学生中选取两名学生了解他们对研学活动的看法,已知选择研学基地B的学生中恰有一名女生,请用列表法或画树状图的方法求出所选2人都是男生的概率.
  • 23. (2024九下·青秀开学考) 如图,AB是的直径,点C,D是上的点,AC分别与BD,OD相交于点E,P.且

    1. (1) 求证:
    2. (2) 若 , 求的直径.
  • 24. (2024九下·青秀开学考) 在平面直角坐标系中.二次函数图象的表达式为 , 其中
    1. (1) 若此函数图象过点 , 求这个二次函数的表达式.
    2. (2) 若为此二次函数图枲上两个不同点.当时, , 求的值.
    3. (3) 已知 , 若点(1.)在此二次函数图象上,且当的增大而减小,求的范围.
  • 25. (2024九下·青秀开学考) 综合与实践

    【发现问题】“速叠杯”是深受学生喜爱的一项运动,杯子的叠放方式如图1所示:每层都是杯口朝下排成一行,自下向上逐层递减一个杯子,直至顶层只有一个杯子,爱思考的小丽发现叠放所需杯子的总数随着第一层(最底层)杯子的个数变化而变化.

    【提出问题】叠放所需杯子的总数y与第一层杯子的个数x之间有怎样的函数关系?

    【分析问题】小丽结合实际操作和计算得到下表所示的数据:

    第一层杯子的个数x

    1

    2

    3

    4

    5

    杯子的总数y

    1

    3

    6

    10

    15

    然后在平面直角坐标系中,描出上面表格中各对数值所对应的点,得到图2、小丽根据图2中点的分布情况,猜想其图象是二次函数图象的一部分;为了验证自己的猜想,小丽从“形”的角度出发.将要计算总数的杯子用黑色圆表示(如图3),再借助“补”的思想,补充相同数量的白色圆,使每层圆的数量相同,进而求出y与x的关系式.

    1. (1) 【解决问题】

      直接写出的关系式;

    2. (2) 现有28个杯子,按【发现问题】中的方式叠放,求第一层怀了的个数;
    3. (3) 杯子的侧面展开图如图4所示,ND,MA分别为上、下底面圆的半径,所对的圆心角 . 将这样足够数量的杯子按【发现问题】中的方式叠放,但受桌面长度限制,第一层提放杯子的总长度不超过 , 求杯子叠放达到的最大高度和此时杯子的总数
  • 26. (2024九下·青秀开学考)    

    【问题情境】如图,在中, , 点在边BC上,将线段DB绕点顺时针旋转得到线段DE(旋转角小于180°),连接BE,CE,以CE为底边在其上方作等腰三角形FEC,使.连接AF.

    1. (1) 【尝试探究】

      如图1,当a=60°时,易知AF-BE;如图2,当a=45°时,则AF与BE的数量关系为

    2. (2) 如图3,请判断∠EBC与的数量关系,并说明理由:
    3. (3) 【拓展应用】

      如图4,当且点B,E,F三点共线时.若 , 请求出CF的长.

微信扫码预览、分享更方便

试卷信息