①平角的定义;②邻补角的定义;③角平分线的定义;④同旁内角互补,两直线平行;⑤两直线平行,内错角相等.
解法:如图1,作点A关于直线l的对称点A′,连接A′B,则A′B与直线l的交点即为P,且PA+PB的最小值为A′B.
请利用上述模型解决下列问题:
操作一:对折矩形纸片ABCD , 使AD与BC重合,得到折痕EF , 把纸片展平;
操作二:在AD上选一点P , 连接BP , 沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM , BM .
如图1,当点M在EF上时,根据以上操作,写出一个度数为30°的角为;
小华将矩形纸片换成正方形纸片,继续探究,过程如下:
将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q , 连接BQ .
①如图2,当点M在EF上时,则∠MBQ= ▲ ;
②改变点P在AD上的位置(点P不与点A , D重合)如图3,判断∠MBQ 与∠CBQ 的数量关系,并说明理由;
在(2)的探究中,已知正方形纸片ABCD的边长为8cm , 当FQ=1cm 时,请直接写出AP的长.
操作:如图1,点E是边长为12的正方形纸片ABCD的边AD上一动点,将正方形沿着CE折叠,点D落在点F处,把纸片展平,射线DF交射线AB于点P .
判断:根据以上操作,图1中AP与EF的数量关系:;
在(1)条件下,若点E是AD的中点,如图2,延长CF交AB于点Q , 点Q的位置是否确定?如果确定,求出线段BQ的长度;如果不确定,说明理由;
在(1)条件下,如图3,CE , DF交于点G , 取CG的中点H , 连接BH , 则BH的最小值是.
【操作】如图1,在矩形中,点M在边上,将矩形纸片沿所在的直线折叠,使点D落在点处,与交于点N.
【猜想】
∵矩形纸片沿所在的直线折叠
∴ ▲
∵四边形是矩形
∴(矩形的对边平行)
∴ ▲ ( )
∴ ▲ ▲ (等量代换)
∴( )
如图2,继续将矩形纸片折叠,使恰好落在直线上,点A落在点处,点B落在点处,折痕为.
①猜想与的数量关系,并说明理由;
②若 , , 求的长.
【问题情境】
在数学活动课上,同学们以“折叠矩形”为主题开展数学活动.已知,在矩形中, , , 点P是边上一点,将沿直线折叠,点A的对应点为点 .
【操作发现】
直觉的误差
有一张的正方形纸片,面积是把这张纸片按图所示剪开成四小块,其中两块是三角形,另外两块是四边形,把剪出的个小块按图所示重新拼合,这样就得到了一个的长方形,面积是 , 面积多了 , 这是为什么?
小明给出如下证明:如图 , 可知, , ,
,
.
,
,
.
因此、、三点不共线同理、、三点不共线,所以拼合的长方形内部有空隙,故面积多了 .
问题探究:
如图2,将矩形ABCD沿AE折叠,使点D落在BC边的点F处,若AB=3,AD=5,求DE的长;
如图3,菱形ABCD是一座避暑山庄的平面示意图,其中∠BAD=60°,AB=120米,现计划在山庄内修建一个三角形花园AP , 点P、Q分别在线段BC、CD上,根据设计要求要使∠APQ=120°,且AP=3PQ , 问能否建造出符合要求的三角形花园APQ , 若能,请找出点P、Q的位置(即求出DQ与BP的长),若不能,请说明理由.
△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处.若AC=1,AB=2,则DE的长为
解决问题:
操作1:将正方形沿过点的直线折叠,使折叠后的点落在对角线上的点处,折痕为 .
操作2:将沿过点的直线折叠,使点 , 点分别落在边 , 上,折痕为 .
则四边形为矩形.
证明:设正方形的边长为1,则 .
由折叠性质可知 , , 则四边形为矩形,
∴ , ∴ .
∴ , 即 , ∴ , ∴ ,
∴四边形为矩形.
阅读以上内容,回答下列问题:
在一次综合实践活动课上,王老师给每位同学各发了一张正方形纸片,请同学们思考如何仅通过折纸的方法来确定正方形一边上的一个三等分点.
【操作探究】
“乘风”小组的同学经过一番思考和讨论交流后,进行了如下操作:
第1步:如图1所示,先将正方形纸片ABCD对折,使点A与点B重合,然后展开铺平,折痕为EF;
第2步:将BC边沿CE翻折到GC的位置;
第3步:延长EG交AD于点H,则点H为AD边的三等分点.
证明过程如下:连接CH, ∵正方形ABCD沿CE折叠, ∴∠D=∠B=∠CGH=90°, ① , 又∵CH=CH ∴△CGH≌△CDH, ∴GH=DH. 由题意可知E是AB的中点,设AB=6(个单位),DH=x,则AE=BE=EG=3, 在Rt△AEH中,可列方程: ② , (方程不要求化简)解得:DH= ③ , 即H是AD边的三等分点. |
“破浪”小组是这样操作的:
第1步:如图2所示,先将正方形纸片对折,使点A与点B重合,然后展开铺平,折痕为EF;
第2步:再将正方形纸片对折,使点B与点D重合,再展开铺平,折痕为AC,沿DE翻折得折痕DE交AC于点G;
第3步:过点G折叠正方形纸片ABCD,使折痕MNIIAD.
【过程思考】
[问题背景]
如图1.数学实践课上,学习小组进行探究活动,老师要求大家对矩形ABCD进行如下操作;①分别以点B. C 为圆心,以大于BC的长度为半径作弧,两弧相交于点E、F,作真线EF交BC于点O.连接AO;②将△ABO沿AO翻折,点B的对应点落在点P处,作射线AP交CD于点Q.
[问题提出]
在矩形ABCD中,AD=5,AB=3,求线段CQ的长:
[问题解决]
经过小组合作、探究、展示,其中的两个方案如下:
方案一:连按OQ,如图2.经过推理、计算可求出线段CQ的长:
方案二:将△ABO绕点O旋转180°至△RCO处,如图3.经过推理、计算可求出线段CQ的长.
请你任选其中一种方案求线段CQ的长.
如图①,在矩形中, , 分别交于点E、F,分别交于点G、H,求证:;
[问题情境]
如图1,小华将矩形纸片ABCD先沿对角线BD折叠,展开后再折叠,使点B落在对角线BD上,点B的对应点记为B',折痕与边AD,BC分别交于点E,F.
一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图①,已知AD是△ABC的角平分线,可证 . 小慧的证明思路是:如图②,过点C作CE∥AB,交AD的延长线于点E,构造相似三角形来证明.