⑴若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;
⑵用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;
⑶用一个平面去截图1中的正方体得到图2,截面三角形ABC中∠ABC=45°;
⑷如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=19
其中正确结论的个数有( )
①这个几何体可能是(图2)甲、乙中的;
②这个几何体最多可由个小正方体构成,请在图3中画出符合最多情况的一个俯视图.
①画线段AB,射线AD;
②找一点M,使M点即在射线AD上,又在直线BC上;
③找一点N,使N到A、B、C、D四个点的距离和最短.
一透明的敞口正方体容器ABCD﹣A′B′C′D′装有一些有色液体,棱AB始终在水平桌面上,容器底部的倾斜角为α (注:图1中∠CBE=α,图2中BQ=3dm).
探究:如图1,液面刚好过棱CD,并与棱BB′交于点Q,其三视图及尺寸如图2所示,那么:图1中,液体形状为 (填几何体的名称);利用图2中数据,可以算出图1中液体的体积为 dm3 . (提示:V=底面积×高)
拓展:在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出.若从正面看,若液面与棱C′C或CB交于点P、点Q始终在棱BB′上,设PC=x,请你在下图中把此容器主视图补充完整,并用含x的代数式表示BQ的长度.
已知:如图1,在Rt△ABC中,∠C=90°,∠A=30°.
求证:BC= AB.
①若木杆 的长为 ,则其影子 的长为 ;
②在同一时刻同一地点,将另一根木杆 直立于地面,请画出表示此时木杆 在地面上影子的线段 ;
①请在图中画出表示路灯灯泡位置的点 ;
②若木杆 的长为 ,经测量木杆 距离地面 ,其影子 的长为 ,则路灯 距离地面的高度为 .
①请计算出这个几何体的体积;
②如果在这个几何体上再添加一些相同的正方体纸盒,并保持从上面看到的形状和从左面看到的形状不变,最多可以再添加 个正方体纸盒.
问题情境:在棱长为1的正方体右侧拼搭若干个棱长小于或等于1的其它正方体,使拼成的立体图形为一个长方体.如图1,是两个棱长为1的正方体搭成的长方体,图2是从上面看这个长方体得到的平面图形,它由两个正方形组成.
操作探究:
请从A,B两题中任选一题作答,我选择哪题.
A.请画出从上面看这个长方体得到的平面图形.(请画出所有可能的图形)
B.请画出从上面看这个长方体得到的平面图形.(请画出所有可能的图形,并在所画图形的下方直接写出拼成该长方体所需的正方体的总个数)
活动一 探究某地正午太阳光下长方体高度与影子的关系.
如图1是长方体在正午阳光下投影情况,图2是图1的俯视图,通过实验测得一组数据如下表所示:
的长(cm) | |||||
的长(cm) | 30 | ||||
在长方形土地上按图3所示设计n幢房子,已知每幢房子形状、高度相同,可近似看成长方体,图中阴影部分为1号楼的影子,相关数据如图所示.现要求每幢楼层数不超过 , 每层楼高度为3米.
【任务2】当1号楼层数为时,请通过计算说明正午时1号楼的影子是否落在2号楼的墙上.
①所有房子层数总和超过.
②正午时每幢房子的影子不会落在相邻房子的墙上.
方案设计 | ||
每幢楼层数 | n的值 | 层数总和 |