当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

【北师大版·数学】2024年中考二轮复习之二元一次方程组

更新时间:2024-04-29 浏览次数:25 类型:二轮复习
一、选择题
  • 1. (2024七下·攸县期中) 我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为(  )

    A . B . C . D .
  • 2. (2024九下·罗湖模拟) 《孙子算经》记载:今有人盗库绢,不知所失几何?但闻草中分绢:人得六匹,盈六匹;人得七匹,不足七匹.问:人、绢各几何?意思是:如果每个人分6匹,还多出6匹,每个人分7匹,还差7匹,问:现在有多少人,有多少匹绢?设现在有x人,有绢y匹,下列所列方程(组)正确的是(   )
    A . B . C . D .
  • 3. (2022·南山模拟) 普通火车从绵阳至成都历时大约2小时,成绵城际快车开通后,时间大大缩短至几十分钟,现假定普通火车与城际快车两列对开的火车于同一时刻发车,其中普通火车由成都至绵阳,城际快车由绵阳至成都,这两车在途中相遇之后,各自用了80分钟和20分钟到达自己的终点绵阳、成都,则城际快车的平均速度是普通火车平均速度的(  )倍.
    A . 2 B . 2.5 C . 3 D . 4
  • 4. 某快递公司每天上午9:00-10:00为集中揽件和派件时段,甲仓库用来搅收快件,乙仓库用来派发快件。该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,则两仓库快件数相等的时刻为( )

    A . 9:15 B . 9:20 C . 9:25 D . 9:30
  • 5. (2023·苍溪模拟) 《九章算术》中有问题:1亩好田是300元,7亩坏田是500元,一人买了好田坏田一共是100亩,花费了10000元,问他买了多少亩好田和坏田?设一亩好田为x元,一亩坏田为y元,根据题意列方程组得(    )
    A . B .   C . D .  
  • 6. (2017·龙华模拟) 定义一种运算“◎”,规定x◎y=ax﹣by,其中a、b为常数,且2◎3=6,3◎2=8,则a+b的值是(   )
    A . 2 B . ﹣2 C . D . 4
  • 7. (2017·青岛模拟) 对于数对(a,b)、(c,d),定义:当且仅当a=c且b=d时,(a,b)=(c,d);并定义其运算如下:

    (a,b)※(c,d)=(ac﹣bd,ad+bc),如(1,2)※(3,4)=(1×3﹣2×4,1×4+2×3)=(﹣5,10).若(x,y)※(1,﹣1)=(1,3),则xy的值是(   )

    A . ﹣1 B . 0 C . 1 D . 2
  • 8. (2024七下·新安期中) 用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是(  )

    A . B . C . D .
  • 9. (2023·深圳模拟) 《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是(    )
    A . B . C . D .
  • 10. (2023·福田模拟) 我国古代数学经典著作《九章算术》中有这样一题,原文是:今有共买物,人出七,盈二;人出六,不足三.问人数、物价各几何?意思是:今有人合伙购物,每人出七钱,会多二钱;每人出六钱,又差三钱,问人数、货物总价各多少?设人数为x人,货物总价为y钱,可列方程组为(    )
    A . B . C . D .
二、填空题
三、计算题
四、解答题
  • 18. (2024·光明模拟) 两个发电厂,每焚烧一吨垃圾,发电厂比发电厂多发40度电,焚烧20吨垃圾比焚烧30吨垃圾少1800度电.
    1. (1) 求焚烧1吨垃圾,各发多少度电?
    2. (2) 两个发电厂共焚烧90吨垃圾,焚烧的垃圾不多于焚烧的垃圾的两倍,求厂和厂总发电量的最大值.
  • 19. (2023·龙川模拟) 某商场销售甲、乙两种商品,其中甲种商品进价为20元/件,售价为30元/件;乙种商品进价为50元/件,售价为80元/件.现商场用13000元购进这两种商品并全部售出,两种商品的总利润为7500元,问该商场购进甲、乙两种商品各多少件?
  • 20. (2022七下·吴江期末) 小明到文具店买文具.请你根据对话信息(小明:阿姨您好,我要买12支中性笔和20本笔记本,是不是一共112元?店员:不对呀,一共是144元.小明:啊……哦,我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了),求中性笔和笔记本的单价分别是多少元?

五、实践探究题
  • 21. 阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:

    解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③

    把方程①代入③得:2×3+y=5,∴y=﹣1

    把y=﹣1代入①得x=4,∴方程组的解为

    请你解决以下问题:

    1. (1) 模仿小军的“整体代换”法解方程组

    2. (2) 已知x,y满足方程组

      (i)求x2+4y2的值;

      (ii)求+的值.

六、综合题
  • 22. (2023八下·江城期末) 为响应国家“全民阅读,建设学习型社会”的倡议,营造读书好,好读书,读好书的氛围,某校图书馆购进甲、乙两种图书,已知甲、乙两种图书的单价分别是25元和8元.
    1. (1) 学校第一次购买甲、乙两种图书共100本,且恰好支出1820元,求第一购买了甲、乙两种图书各多少本?
    2. (2) 若学校准备再次购买甲、乙两种图书共210本,且甲种图书的数量不低于乙种图书数量的一半,请问怎么购买费用最少?最少费用是多少元?
  • 23. (2023·河源模拟) 2022年北京冬奥会点燃了人们对冰雪运动的热情,各种有关冬奥会的纪念品也一度脱销.某实体店购进了甲、乙两种纪念品各30个,共花费1080元.已知乙种纪念品每个进价比甲种纪念品贵4元.

    1. (1) 甲、乙两种纪念品每个进价各是多少元?
    2. (2) 这批纪念品上架之后很快售罄.该实体店计划按原进价再次购进这两种纪念品共100件,销售官网要求新购进甲种纪念品数量不低于乙种纪念品数量的(不计其他成本).已知甲、乙纪念品售价分别为24元/个,30元/个.请问实体店应怎样安排此次进货方案,才能使销售完这批纪念品获得的利润最大?

微信扫码预览、分享更方便

试卷信息