①函数图象关于 轴对称;②函数既有最大值,也有最小值;③当 时, 随 的增大而减小;④当 时,关于 的方程 有 个实数根.其中正确的结论个数是( )
班级 |
参加人数 |
中位数 |
方差 |
平均数 |
甲 |
45 |
109 |
181 |
110 |
乙 |
45 |
111 |
108 |
110 |
某同学分析上表后得到如下结论:①甲、乙两班学生平均成绩相同;②乙班优秀人数多于甲班优秀人数(每分钟跳绳≥110个为优秀);③甲班成绩的波动比乙班大,则正确结论的序号是.
【收集数据】
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
【整理、描述数据】
按如下分数段整理、描述这两组样本数据:
成绩 人数 部门 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)
【分析数据】
两组样本数据的平均数、中位数、众数如下表所示:
部门 | 平均数 | 中位数 | 众数 |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
【得出结论】
.估计乙部门生产技能优秀的员工人数为;
.可以推断出部门员工的生产技能水平较高,理由为.(至少从两个不同的角度说明推断的合理性)
有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.
艾斯柯同学类比以上知识的研究方法,用函数与方程的思想对不等式的解法进行了探究,请将他下面的②③④补充完整:
①当x=0时,原不等式不成立:当x>0时,原不等式可以转化为x2+4x﹣1> ;当x<0时,原不等式可以转化为x2+4x﹣1< .
②构造函数,画出图象
设y3=x2+4x﹣1,y4= 在同一坐标系中分别画出这两个函数的图象.
双曲线y4= 如图2所示,请在此坐标系中直接画出抛物线y3=x2+4x﹣1(可不列表);
③利用图象,确定交点横坐标
观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为
④借助图象,写出解集
结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为