当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广东省汕头市濠江区2024年中考数学一模试题

更新时间:2024-07-03 浏览次数:198 类型:中考模拟
一、选择题(本大题10题,每小题3分,共30分).在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
二、填空题(本大题6题,每小题3分,共18分).请将下列各题的正确答案填写在答题卡相应的位置上.
三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)
  • 18. (2024·濠江模拟) 如图,点C平分线上一点,于点D . 求证:是等腰三角形.

    1. (1) 如图的方格,每个小格的顶点叫做格点,若每个小正方形边长为1单位,请在方格中作一个正方形,同时满足下列两个条件:

      ①所作的正方形的顶点,必须在方格上;

      ②所作正方形的面积为8个平方单位;

    2. (2) 在数轴上表示实数(保留作图痕迹)
  • 20. (2024·濠江模拟) 阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:

    立方和公式:

    立方差公式:.

    根据材料和已学知识解决下列问题

    1. (1) 因式分解:
    2. (2) 先化简,再求值: , 其中.
  • 21. (2024·濠江模拟) 嘉嘉给琪琪展示她做的一个小程序,如图,运行程序后屏幕显示一个平面直角坐标系,当她在键盘上输入数字“2”时,屏幕上显示一个点,坐标为 ,输入数字“3”时,屏幕上显示另一个点,坐标为 ,嘉嘉告诉琪琪:这些点都在抛物线 上.

    1. (1) 求抛物线的解析式,并求出输入“4”得到的点的坐标;
    2. (2) 嘉嘉和琪琪从2、3、4中各选一个数字输入,得到两个不同的点,求两个点都在 轴下方的概率.
  • 22. (2024·濠江模拟) 甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一”假期,两家均推出了优惠方案,甲采摘园的优惠方案:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案:游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为(元),在乙采摘园所需总费用为(元),图中折线表示x之间的函数关系.

    1. (1) 求x之间的函数关系式;
    2. (2) 当游客采摘15千克的草莓时,你认为他在哪家草莓园采摘更划算?
  • 23. (2024·濠江模拟) 如图,⊙O是△ABC的外接圆,AD是⊙O的直径,F是AD延长线上一点,连接CD,CF,且CF是⊙O的切线.

    1. (1) 求证:∠DCF=∠CAD.
    2. (2) 探究线段CF,FD,FA的数量关系并说明理由;
    3. (3) 若cosB= , AD=2,求FD的长.
  • 24. (2024·濠江模拟) 如图,二次函数的图象与x轴交于点和点B , 与y轴交于点C , 且顶点D的坐标为 , 对称轴与直线交于点E , 与x轴交于点F , 连接

    1. (1) 求二次函数的解析式;
    2. (2) 点P上方二次函数图象上,且的面积等于6,求点P的坐标;
    3. (3) 在二次函数图象上是否存在一点M , 使得?若存在,求出直线x轴的交点Q的坐标;若不存在,请说明理由.
  • 25. (2024·濠江模拟) 如图①,在矩形中,E边上一点,连接 , 将矩形沿折叠,顶点D恰好落在边上点F处,延长的延长线于点G

    1. (1) 求线段的长.
    2. (2) 判断四边形是什么特殊四边形,并说明理由.
    3. (3) 如图②,MN分别是线段上的动点(与端点不重合),且 , 设 . 是否存在这样的点N , 使是直角三角形?若存在,请求出x的值;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息