当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

四川省成都市2024年中考数学试卷

更新时间:2024-07-01 浏览次数:154 类型:中考真卷
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
二、填空题(本大题共5个小题,每小题4分,共20分)
三、解答题(本大题共5个小题,共48分)
    1. (1) 计算:.
    2. (2) 解不等式组:
  • 15. (2024·成都) 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.
     

    游园线路

    人数

    国风古韵观赏线

    44

    世界公园打卡线

    亲子互动慢游线

    48

    园艺小清新线

    根据图表信息,解答下列问题:

    1. (1) 本次调查的员工共有人,表中的值为
    2. (2) 在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;
    3. (3) 若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.
  • 16. (2024·成都) 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子垂直于地面,长8尺.在夏至时,杆子在太阳光线照射下产生的日影为;在冬至时,杆子在太阳光线照射下产生的日影为.已知 , 求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:

  • 17. (2024·成都) 如图,在中,为斜边上一点,以为直径作 , 交两点,连接.

    1. (1) 求证:
    2. (2) 若 , 求的长和的直径.
  • 18. (2024·成都) 如图,在平面直角坐标系中,直线与直线相交于点 , 与轴交于点 , 点在反比例函数图象上.

    1. (1) 求的值;
    2. (2) 若为顶点的四边形为平行四边形,求点的坐标和的值;
    3. (3) 过两点的直线与轴负半轴交于点 , 点与点关于轴对称.若有且只有一点 , 使得相似,求的值.
四、填空题(本大题共5个小题,每小题4分,共20分)
五、解答题(本大题共3个小题,共30分)
  • 24. (2024·成都) 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进AB两种水果共进行销售,其中A种水果收购单价10元/kg,B种水果收购单价15元/kg.
    1. (1) 求AB两种水果各购进多少千克;
    2. (2) 已知A种水果运输和仓储过程中质量损失 , 若合作社计划A种水果至少要获得的利润,不计其他费用,求A种水果的最低销售单价.
  • 25. (2024·成都) 如图,在平面直角坐标系中,抛物线轴交于AB两点(点在点的左侧),其顶点为是抛物线第四象限上一点.

    1. (1) 求线段的长;
    2. (2) 当时,若的面积与的面积相等,求的值;
    3. (3) 延长轴于点 , 当时,将沿方向平移得到.将抛物线平移得到抛物线 , 使得点都落在抛物线上.试判断抛物线是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.
  • 26. (2024·成都) 数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片中,.

    1. (1) 【初步感知】

      如图1,连接 , 在纸片绕点旋转过程中,试探究的值.

    2. (2) 【深入探究】

      如图2,在纸片绕点旋转过程中,当点恰好落在的中线的延长线上时,延长于点 , 求的长.

    3. (3) 【拓展延伸】

      在纸片绕点旋转过程中,试探究三点能否构成直角三角形.若能,直接写出所有直角三角形的面积;若不能,请说明理由.

微信扫码预览、分享更方便

试卷信息