一、选择题:本题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是符合题目要求的.
-
A .
B . 2
C .
D . 1
-
-
-
4.
(2024高一上·柯桥期末)
大善塔,位于绍兴市区城市广场东南隅,是绍兴城地标性建筑,其塔顶部可以近似地看成一个正六棱锥.假设该六棱锥的侧面和底面的夹角为
, 则该六棱锥的高和底面边长之比为( )
-
5.
(2024高一上·柯桥期末)
某校组织高一1班,2班开展数学竞赛,1班40人,2班30人,根据统计分析,两班成绩的方差分别为
,
.记两个班总成绩的方差为
, 则( )
-
6.
(2024高一上·柯桥期末)
有一座6层大楼,3人从大楼第一层进入电梯,假设每个人自第二层开始在每一层离开电梯是等可能的,则这3人离开电梯的层数之和为10的概率是( )
-
-
8.
(2024高一下·韶关期中)
费马点是指位于三角形内且到三角形三个顶点距离之和最小的点
当三角形三个内角都小于
时,费马点与三角形三个顶点的连线构成的三个角都为
已知在
中,
,
为
的费马点,若
,
, 则
的取值范围是( )
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
-
-
A . 若 , 则
B . 若 , 则
C . 若 , 则
D . 若 , 则在复平面内对应的点在一条直线上
-
A . 对于事件 , , 若 , 则
B . 若三个事件 , , 两两互斥,则
C . 若 , , 则事件 , 相互独立与互斥不会同时发生
D . 若事件 , 满足 , , , 则
-
三、填空题:本题共4小题,每小题5分,共20分.
-
-
-
-
16.
(2024高一上·柯桥期末)
已知三棱锥
,
面
,
,
交
于
,
交
于
,
, 记三棱锥
, 四棱锥
的外接球的表面积分别为
,
, 当三棱锥
体积最大时,则
.
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
-
-
18.
(2024高一上·柯桥期末)
《中国制造2025》提出“节能与新能源汽车”作为重点发展领域,这为我国节能与新能源汽车产业发展指明了方向,某新能源汽车生产商为了提升产品质量,对某款汽车的某项指标进行检测后,频率分布直方图如图所示:
-
-
(2)
若利用该指标制定一个标准,需要确定临界值
, 将该指标小于
的汽车认为符合节能要求,已知
, 以事件发生的频率作为相应事件发生的概率,求该款汽车符合节能要求的概率
.
-
-
(1)
证明:
平面
;
-
(2)
当直线
与平面
所成角为
时,求二面角
的余弦值.
-
-
(1)
证明:
;
-
(2)
求
的取值范围.
-
21.
(2024高一上·柯桥期末)
某班学生分A,
,
,
四组参加数学知识竞答,规则如下:四组之间进行单循环(每组均与另外三组进行一场比赛);每场比赛胜者积3分,负者0分;若出现平局,则比赛双方各积1分.现假设四个组战胜或者负于对手的概率均为
, 出现平局的概率为
, 每场比赛相互独立.
-
-
(2)
一轮单循环结束后,求四组总积分一样的情况种数,并计算四组总积分一样的概率.
-
-
(1)
如图2,若二面角
为直二面角,
,
分别是
,
的中点,若直线
与平面
所成角为
,
, 求平面
与平面
所成锐二面角的余弦值的取值范围;
-
(2)
我们把和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线,点
为线段
的中点,
,
分别在线段
,
上(不包含端点),且
为
,
的公垂线,如图3所示,记四面体
的内切球半径为
, 证明:
.