一、在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内.错选、多选或未选均不得分.
-
A . 2,3,4
B . 3,5,8
C . 6,8,10
D . 5,5,9
-
A . 1组
B . 2组
C . 3组
D . 4组
-
A . 两点确定一条直线
B . 两点之间,线段最短
C . 垂线段最短
D . 三角形具有稳定性
-
A . 角平分线
B . 中线
C . 高线
D . 以上都不是
-
A .
B . 4
C . 5
D . 6
-
二、填空题(本大题共6小题,每小题3分,共18分)
-
-
8.
(2024八上·月考)
“香渡栏干屈曲,红妆映、薄绮疏棂.”图1窗棂的外边框可抽象为正六边形(如图2),则该正六边形的内角和为
.
-
-
-
-
12.
(2024八上·武威期末)
有一张三角形纸片
, 其中
,
,
, 过三角形纸片的某个顶点将
剪成两个三角形,其中有一个为直角三角形,则剪完后得到的两个三角形的所有内角中,最大角的度数为
.
三、解答题(本大题共5小题,每小题6分,共30分)
-
13.
(2024八上·月考)
(1)在
中,三角形各内角的度数如图所示,求
的度数.
(2)已知一个多边形的内角和是它的外角和的4倍,求该多边形的边数.
-
-
-
(2)
若此三角形为等腰三角形,求该等腰三角形的周长.
-
15.
(2024八上·月考)
现有一块如图所示的模板.为了加工成某种特定的形状,需要
,
的延长线的夹角为
(
).由于交点
不在模板上,不便测量,工人师傅测得
,
,
, 请通过计算判断该模板是否符合要求.
-
-
(1)
求
的度数;
-
(2)
求
的度数.
-
17.
(2024八上·月考)
如图,在
的网格中,每个小正方形的边长均为1,小正方形的每一个顶点称为格点.A,B,C均在格点上,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).
-
(1)
在图1中,过点C作
的中线.
-
(2)
在图2中,在边
上找到点E,使
.
四、解答题(本大题共3小题,每小题8分,共24分)
-
-
-
(2)
请判断
与
的位置关系,并说明理由.
-
-
20.
(2024八上·月考)
定义:若三角形的两个内角
与
满足
, 则称该三角形为“准互余三角形”,
与
为“准互余角”.
-
-
(2)
若
为“准互余三角形”,
,
和
是“准互余角”,求
的度数.
-
(3)
如图,在
中,
, 若
平分
, 求证:
是“准互余三角形”.
五、解答题(本大题共2小题,每小题9分,共18分)
-
21.
(2024八上·任泽月考)
问题情境:在探索多边形的内角与外角关系的活动中,同学们经历了观察、猜想、实验、计算、推理、验证等过程,提出了以下问题,请解答.
-
(1)
若六边形的一个内角的度数是
.
①与它相邻的外角的度数为_________;
②其他五个内角的和为_________.
-
(2)
若n边形的一个外角为
, 与它不相邻的
个内角的和为
, 求
,
与n之间满足的等量关系,并说明理由.
-
22.
(2024八上·任泽月考)
【模型理解】(1)如图1,
和
交于点O,求证:
.
【模型应用】(2)如图2, , 分别平分 , , 求证: .
六、解答题(本大题共12分)