一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
-
-
-
A . 充分不必要条件
B . 必要不充分条件
C . 充分必要条件
D . 既不充分也不必要条件
-
-
-
6.
(2024高三上·衡阳模拟)
某城市随机选取
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmath%3E)
个人参加活动,假设该城市人口年龄分布均匀,要使得参加该活动有人生肖相同的概率大于
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmn%3E50%3C%2Fmn%3E%3Cmi+mathvariant%3D%22normal%22%3E%25%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 则至少需要选取( )个人.
-
7.
(2024高三上·衡阳模拟)
已知双曲线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmo%3E%3A%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsup%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsup%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsup%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 两焦点分别为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 过右焦点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
作直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3El%3C%2Fmi%3E%3C%2Fmath%3E)
交右支于
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
点,且
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmover+accent%3D%22true%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo+stretchy%3D%22true%22%3E%E2%83%97%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmover+accent%3D%22true%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmsub%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3Cmo+stretchy%3D%22true%22%3E%E2%83%97%3C%2Fmo%3E%3C%2Fmover%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%E2%88%A0%3C%2Fmo%3E%3Cmsub%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmtext%3E%CF%80%3C%2Fmtext%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 则双曲线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
的离心率为( )
-
二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.
-
A . 序列不可能既是等比数列又是等差数列
B . 若成等比数列,
和
有
组可能取值
C . 若成等差数列,
和
有
组可能取值
D . 若该数据平均数是
, 则方差最小值为
-
A .
在定义域上单调递增
B .
在定义域上单调递减
C .
D . 若存在
, 则
-
A .
B . 若
,
是偶函数
C . 若
, 则
D .
的值不可能是
三、填空题:本题共3小题,每小题5分,共15分.
-
-
-
14.
(2024高三上·衡阳模拟)
已知由系列圆构成的点集为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmo%3E%7B%3C%2Fmo%3E%3Cmo+stretchy%3D%22false%22%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo+stretchy%3D%22false%22%3E%29%3C%2Fmo%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmo+stretchy%3D%22false%22%3E%28%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3Ecos%3C%2Fmi%3E%3Cmi%3E%CE%B8%3C%2Fmi%3E%3Cmo+stretchy%3D%22false%22%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmo+stretchy%3D%22false%22%3E%28%3C%2Fmo%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3Esin%3C%2Fmi%3E%3Cmi%3E%CE%B8%3C%2Fmi%3E%3Cmo+stretchy%3D%22false%22%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmo%3E%E2%89%A4%3C%2Fmo%3E%3Cmi%3E%CE%B8%3C%2Fmi%3E%3Cmo%3E%E2%89%A4%3C%2Fmo%3E%3Cmi%3E%CF%86%3C%2Fmi%3E%3Cmo%3E%7D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 图形如图中的阴影部分所示,将平面剩余部分分为内外两部分(空白区域),给出以下命题:
![](//tikupic.21cnjy.com/ct20241o/e1/b1/e1b1d9837f8cdcb12b358a330cc33f07.png)
①图形内部空白区域的面积最小值为![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%CF%80%3C%2Fmtext%3E%3C%2Fmath%3E)
②图形到原点的最小距离为![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmath%3E)
③
时,图形关于直线
对称
④
时,图形内外边界的长度和为![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmn%3E6%3C%2Fmn%3E%3Cmtext%3E%CF%80%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
其中正确的有.
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
-
-
(1)
求证:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmo%3E%2F%3C%2Fmo%3E%3Cmo%3E%2F%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
平面
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmsub%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmsub%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
;
-
(2)
若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmsub%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 且平面
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmo%3E%E2%8A%A5%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
平面
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 求二面角
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmsub%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的余弦值大小.
-
-
-
(1)
求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%E2%96%B3%3C%2Fmo%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmsub%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
面积的最大值;
-
(2)
设直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmi%3EA%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的斜率为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ek%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
和直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的斜率为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ek%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 椭圆
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EE%3C%2Fmi%3E%3C%2Fmath%3E)
上是否存在点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EP%3C%2Fmi%3E%3C%2Fmath%3E)
, 使得
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ek%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmo%3E%E2%8B%85%3C%2Fmo%3E%3Cmsub%3E%3Cmi%3Ek%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
为定值,若存在,求出点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EP%3C%2Fmi%3E%3C%2Fmath%3E)
与
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ek%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmo%3E%E2%8B%85%3C%2Fmo%3E%3Cmsub%3E%3Cmi%3Ek%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
值,若不存在,请说明理由.
-
18.
(2024高三上·衡阳模拟)
学校教学楼的每两层楼之间的上下楼梯有
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmn%3E15%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
个台阶,从下至上记台阶所在位置为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E15%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 同学甲在上楼的过程中,每一步等可能地跨
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmath%3E)
或
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmath%3E)
个台阶(位置
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
或
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
).
-
(1)
记甲迈
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmath%3E)
步后所在的位置为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EX%3C%2Fmi%3E%3C%2Fmath%3E)
, 写出
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EX%3C%2Fmi%3E%3C%2Fmath%3E)
的分布列和期望值.
-
(2)
求甲
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E6%3C%2Fmn%3E%3C%2Fmath%3E)
步内到过位置
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E8%3C%2Fmn%3E%3C%2Fmath%3E)
的概率;
-
(3)
求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmn%3E10%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
步之内同时到过位置
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmn%3E10%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
和
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmn%3E12%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的有多少种走法,及发生的概率.
-
19.
(2024高三上·衡阳模拟)
某次生日会上,餐桌上有一个披萨饼,小华同学准备用刀切的方式分给在座的
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmn%3E15%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
位小伙伴,由此思考一个数学问题:假设披萨近似可看成平面上的一个圆,第
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ek%3C%2Fmi%3E%3C%2Fmath%3E)
条切痕看作直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3El%3C%2Fmi%3E%3Cmi%3Ek%3C%2Fmi%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 设切
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmath%3E)
下,最多能切出的块数为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 如图易知
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
.
-
(1)
试写出
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 作出对应简图,并指出要将披萨分给在座的
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmn%3E15%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
位小伙伴(不考虑大小平分),最少要切几下;
-
(2)
这是一个平面几何问题,利用“降维打击”思想,联想到一条线段被切
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmath%3E)
下能划分成
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
段,由此求出数列
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%7B%3C%2Fmo%3E%3Cmsub%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsub%3E%3Cmo%3E%7D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的通项公式;
-
(3)
若将披萨换成一个蛋糕(近似看成空间中的一个圆柱体),同样用刀切方式分蛋糕,可以从上下底面和侧面各方向切入,每次切面都看作一个平面.若切
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmath%3E)
下,最多能切出的块数为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmtext%3Ec%3C%2Fmtext%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
, 求出
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%7B%3C%2Fmo%3E%3Cmsub%3E%3Cmi%3Ec%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsub%3E%3Cmo%3E%7D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的通项公式,并指出这时最多需要切几下能分给
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmn%3E15%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
个人.(已知
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsup%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsup%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmo%3E%E2%8B%AF%3C%2Fmo%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3En%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E6%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmi%3En%3C%2Fmi%3E%3Cmo+stretchy%3D%22false%22%3E%28%3C%2Fmo%3E%3Cmi%3En%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo+stretchy%3D%22false%22%3E%29%3C%2Fmo%3E%3Cmo+stretchy%3D%22false%22%3E%28%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3En%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo+stretchy%3D%22false%22%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
)