当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省湖州市吴兴区2017-2018学年九年级上学期期末考试...

更新时间:2024-07-12 浏览次数:1204 类型:期末考试
一、选择题
二、填空题
三、解答题:
  • 18. (2018九上·吴兴期末) 如图所示,点D在△ABC的AB边上,AD=2,BD=4,AC= 2 .求证:△ACD∽△ABC.

  • 19. (2018九上·吴兴期末) 2017年11月11日,张杰参加了某网点的“翻牌抽奖”活动。如图所示,4张牌上分别写有对应奖品的价值为10元,15元,20元和“谢谢惠顾”的字样。


    1. (1) 如果随机翻1张牌,那么抽中有奖的概率为 ,抽中15元及以上奖品的概率为 。
    2. (2) 如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,用画树状图或列表法列出抽奖的所有等可能性情况,并求出获奖品总值不低于30元的概率。
  • 20. (2018九上·吴兴期末) 小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片 ABCD 放在每格宽度都为6mm的横格纸中,恰好四个顶点都在横格线上,已知 α =36°,求长方形卡片的周长.”请你帮小艳解答这道题.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)

  • 21. (2022九上·镇海区期中) 如图,已知点O为半圆的圆心,直径AB=12,C是半圆上一点,OD⊥AC于点D,OD=3.

    1. (1) 求AC的长;
    2. (2) 求图中阴影部分的面积.
  • 22. (2018九上·吴兴期末) 元旦前夕,湖州吴兴某工艺厂设计了一款成本10元/件的工艺品投放市场试销。试销发现,每天销售量y(件)与销售单价x(元/件)之间的关系可近似地看作一次函数:y=-10x+700.(利润=销售总价-成本总价)
    1. (1) 如果该厂想要每天获得5000元的利润,那么销售单价应定为多少元/件?
    2. (2) 当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?
    3. (3) 湖州市物价部门规定,该工艺品销售单价最高不能超过38元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
  • 23. (2018九上·吴兴期末) 某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部△CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.

    1. (1) 当MN和AB之间的距离为0.5米时,求此时△EMN的面积;
    2. (2) 设MN与AB之间的距离为x 米,试将△EMN的面积S(平方米)表示成关于x的函数; 
    3. (3) 请你探究△EMN的面积S(平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由.  
  • 24. (2018九上·吴兴期末) 如图,在平面直角坐标系中,抛物线 与x轴交于点A,C,与y轴交于点B。已知点A坐标为(8,0),点B为(0,8),点D为(0,3),

    tan∠DCO= ,直线AB和直线CD相交于点E。


    1. (1) 求抛物线的解析式,并化成 y=a ( x−m ) 2+k的形式;
    2. (2) 设抛物线的顶点为G,请在直线AB上方的抛物线上求点P的坐标,使得 S△ABP = S△ABG .
    3. (3) 点M为直线AB上的一点,过点M作x轴的平行线分别交直线AB,CD于点M,N,连结DM,DN,是否存在点M,使得△DMN为等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由。

微信扫码预览、分享更方便

试卷信息