当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2016年贵州省贵阳市中考数学试卷

更新时间:2016-11-16 浏览次数:562 类型:中考真卷
一、选择题
二、填空题:
三、解答题:
  • 16. (2016·贵阳) 先化简,再求值: ÷ ,其中a= +1.
  • 17. (2016·贵阳) 教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).
    1. (1) 将4个开关都闭合时,教室里所有灯都亮起的概率是
    2. (2) 在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.
  • 18. (2016·贵阳) 如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.

    1. (1) 求证:△ABF≌△CBE;
    2. (2) 判断△CEF的形状,并说明理由.
  • 19. (2016·贵阳) 某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:

    (说明:A等级:135分﹣150分 B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)

    1. (1) 此次抽查的学生人数为
    2. (2) 把条形统计图和扇形统计图补充完整;
    3. (3) 若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.
  • 20. (2023七下·高要期末) 为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
    1. (1) 求足球和篮球的单价各是多少元?
    2. (2) 根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?
  • 21. (2016·贵阳) “蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)

  • 22. (2021·梓潼模拟) 如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y= (x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).

    1. (1) 求反比例函数的表达式;
    2. (2) 求点F的坐标.
  • 23. (2016·贵阳) 如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.

    1. (1) 利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)
    2. (2) 在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;
    3. (3) 在(2)的条件下,OD交BC于点E,求由线段ED,BE, 所围成区域的面积.(其中 表示劣弧,结果保留π和根号)
  • 24. (2016·贵阳) 解答

    1. (1)

      阅读理解:

      如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.

      解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.

      中线AD的取值范围是

    2. (2) 问题解决:

      如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;

    3. (3) 问题拓展:

      如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.

  • 25. (2016·贵阳)

    如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.

    1. (1) 求二次函数的表达式;

    2. (2) 连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;

    3. (3) 若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.

      温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1 , y1),Q(x2 , y2),

      当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;

      当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.

微信扫码预览、分享更方便

试卷信息