当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河南省新乡七中2018届九年级上学期数学期末考试试卷

更新时间:2018-02-09 浏览次数:746 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 16. (2018九上·新乡期末) 解下列方程.
    1. (1) (x+3)2=2(x+3)
    2. (2) 3x(x-1)=2-2x
  • 17. (2018九上·新乡期末) 如图,在平面直角坐标系网格中,△ABC的顶点都在格点上,点C坐标(0,-1).

    1. (1) ①作出△ABC 关于原点对称的△A1B1C1 , 并写出点A1的坐标;

      ②把△ABC 绕点C逆时针旋转90°,得△A2B2C2 , 画出△A2B2C2 , 并写出点A2的坐标;


    2. (2) 直接写出△A2B2C2的面积
  • 18. (2018九上·新乡期末) 在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机摸取一个小球然后放回,再随机地摸取一个小球.
    1. (1) 采用树状图法(或列表法)列出两次摸取小球出现的所有可能结果,并回答摸取两球出现的所以可能结果共有几种;
    2. (2) 求两次摸取的小球标号相同的概率;
    3. (3) 求两次摸取的小球标号的和等于4的概率;
    4. (4) 求两次摸取的小球标号的和是2的倍数或3的倍数的概率.
  • 19. (2018九上·新乡期末) 已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.

    1. (1) 求证:DC是⊙O的切线;
    2. (2) 若AB=2,求DC的长.  
  • 20. (2018九上·新乡期末) 如图,已知AB是半圆O的直径,点P是半圆上一点,连结BP,并延长BP到点C,使PC=PB,连结AC.


    1. (1) 求证:AB=AC.
    2. (2) 若AB=4,∠ABC=30°,①求弦BP的长;②求阴影部分的面积.
  • 21. (2018九上·新乡期末) 某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价现在的售价为每箱36元,每月可销售60箱市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.
    1. (1) 写出y与x之间的函数关系式和自变量x的取值范围;
    2. (2) 市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?
  • 22. (2018九上·新乡期末) 如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG、DE.

    n

    1. (1) 求证:DE⊥AG;
    2. (2) 正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形OE’F’G’,如图2.

      ①在旋转过程中,当∠OAG’是直角时,求 的度数;

      ②若正方形ABCD的边长为1,在旋转过程中,求AF’长的最大值和此时 的度数,直接写出结果不必说明理由.

  • 23. (2018九上·新乡期末) 如图,在平面直角坐标系中,二次函数y=-x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),A点在原点的左侧,B点的坐标为(3,0).点P是抛物线上一个动点,且在直线BC的上方.

    1. (1) 求这个二次函数的表达式.
    2. (2) 连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
    3. (3) 当点P运动到什么位置时,四边形 ABPC的面积最大,并求出此时点P的坐标和四边形面积的最大值。

微信扫码预览、分享更方便

试卷信息