当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省宜兴市桃溪中学2016-2017学年八年级下学期数学期...

更新时间:2024-07-31 浏览次数:382 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 19. (2017八下·宜兴期中) 计算:                                   
    1. (1)  
    2. (2)
  • 20. (2017八下·宜兴期中) 解方程:                                      
    1. (1)  
    2. (2)
  • 21. (2020八下·宜兴期中) 如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:

    ①以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1 , 画出△AB1C1.

    ②作出△ABC关于坐标原点O成中心对称的△A2B2C2.

    ③作出点C关于x轴的对称点P. 若点P向右平移x个单位长度后落在△A2B2C2的内部(不含落在△A2B2C2的边上),请直接写出x的取值范围..

  • 22. (2019·冷水江模拟) 某校初二年级数学考试,(满分为100分,该班学生成绩均不低于50分)作了统计分析,绘制成如图频数分布直方图和频数、频率分布表,请你根据图表提供的信息,解答下列问题:

    分组

    49.5~59.5

    59.5~69.5

    69.5~79.5

    79.5~89.5

    89.5~100.5

    合计

    频数

    2

    a

    20

    16

    4

    50

    频率

    0.04

    0.16

    0.40

    0.32

    b

    1

    1. (1) 频数、频率分布表中a=,b=;(答案直接填在题中横线上)
    2. (2) 补全频数分布直方图;
    3. (3) 若该校八年级共有600名学生,且各个班级学生成绩分布基本相同,请估计该校八年级上学期期末考试成绩低于70分的学生人数.
  • 23. (2017八下·宜兴期中) 在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:

    摸球的次数n

    100

    200

    300

    500

    800

    1000

    3000

    摸到白球的次数m

    63

    124

    178

    302

    481

    599

    1803

    摸到白球的频率  

    0.63

    0.62

    0.593

    0.604

    0.601

    0.599

    0.601

    1. (1) 请估计:当实验次数为10000次时,摸到白球的频率将会接近;(精确到0.1)
    2. (2) 假如你摸一次,你摸到白球的概率P(摸到白球)=
    3. (3) 如何通过增加或减少这个不透明盒子内球的具体数量,使得在这个盒子里每次摸到白球的概率为0.5?
  • 24. (2017八下·宜兴期中) 如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.

    1. (1) 求证:四边形DBFE是平行四边形;
    2. (2) 当△ABC满足什么条件时,四边形DBFE是菱形?为什么?
  • 25. (2017八下·宜兴期中) 为了迎接“五•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3600元购进甲种运动鞋的数量与用3000元购进乙种运动鞋的数量相同.

    1. (1) 求m的值;
    2. (2) 要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21600元,且不超过22440元,问该专卖店有多少种进货方案?
  • 26. (2017八下·宜兴期中) 已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,动点P在线段BC上以每秒2个单位长的速度由点C向B 运动.设 动点P的运动时间为t秒

    1. (1) 当t为何值时,四边形PODB是平行四边形?
    2. (2) 在直线CB上是否存在一点Q,使得O、D、Q、P四点为顶点的四边形是菱形?若存在,求t的值,并求出Q点的坐标;若不存在,请说明理由。
    3. (3) 在线段PB上有一点M,且PM=5,当P运动秒时,四边形OAMP的周长最小, 并画图标出点M的位置。

              

微信扫码预览、分享更方便

试卷信息