当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省绍兴县杨汛桥镇中学2018届九年级数学保送生考试模拟试...

更新时间:2024-07-13 浏览次数:700 类型:中考模拟
一、选择题
  • 1. (2018·绍兴模拟) 某工厂生产质量为 1 克,5 克,10 克,25 克四种规格的球. 现从中取若干个球装到一个空箱 子里. 已只这个箱子里球的平均质量为 20 克,若再放入一个 25 克的球,则箱子里球的平均质 量变为 21 克,则此箱中质量为 10 克的球的数目为( )
    A . 0 B . 1 C . 2 D . 3
  • 2. (2018·绍兴模拟) α为锐角,当 无意义时,sin(α+15°)+cos(α﹣15°)的值为(  )
    A . B . C . D .
  • 3. (2018·绍兴模拟) 设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,(   )
    A . 若m>1,则(m﹣1)a+b>0 B . 若m>1,则(m﹣1)a+b<0 C . 若m<1,则(m +1)a+b>0 D . 若m<1,则(m +1)a+b<0
  • 4. (2021九上·杭州期中)

    如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则 的值是(  )

    A . B . C . D . 2
  • 5. (2018·绍兴模拟) 我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧 ,…得到斐波那契螺旋线,然后顺次连结P1P2 , P2P3 , P3P4 , …得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为(   )


    A . (﹣6,24) B . (﹣6,25) C . (﹣5,24) D . (﹣5,25)
二、填空题
三、解答题
  • 12. (2019九上·沭阳月考) 关于x的一元二次方程x2﹣(k+3)x+2k+2=0.
    1. (1) 求证:方程总有两个实数根;
    2. (2) 若方程有一个根小于1,求k的取值范围.
  • 13. (2018·绍兴模拟) 某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼五楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知CD=12米,求旗杆AB的高度.


  • 14. (2018·绍兴模拟) 小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.

    1. (1) 若区域Ⅰ的三种瓷砖均价为300元/m2 , 面积为S(m2),区域Ⅱ的瓷砖均价为2 00元/m2 , 且两区域的瓷砖总价为不超过12000元,求S的最大值;
    2. (2) 若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等

      ①求AB,BC的长;

      ②若甲、丙两瓷砖单价之和为300元/m2 , 乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.

  • 15. (2018·绍兴模拟) 如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.

    1. (1) 求证:△OAD∽△ABD;
    2. (2) 当△OCD是直角三角形时,求B、C两点的距离;
    3. (3) 记△AOB、△AOD、△COD 的面积分别为S1、S2、S3 , 如果S2是S1和S3的比例中项,求OD的长.
  • 16. (2018·绍兴模拟) 如图,已知点A(0,4)和点B(3,0)都在抛物线y=mx2+2mx+n上.

    1. (1) 求m、n;
    2. (2) 向右平移上述抛物线,记平移后点A的对应点为D,点B的对应点为C,若四边形ABCD为菱形,求平移后抛物线的表达式;
    3. (3) 记平移后抛物线的对称轴与直线AC的交点为点E,x轴上的点F,使得以点C、E、F为顶点的三角形与△ABE相似,请求出F点坐标.
四、填空题
五、解答题
  • 19. (2018·绍兴模拟) 如图,△ABC是边长为2的正三角形,点D在△ABC内部,且满足DB=DC,DB⊥DC,点E在边AC上,延长ED交线段AB于点H.


    1. (1) 若ED=EC请直接写出∠BAD=,∠AEH=,∠AHE=
    2. (2) 若ED=EC,求EH的长;
    3. (3) 若AE=x,AH=y,请利用S△AEH=S△AED+S△AHD , 求y关于x的函数关系式,并求自变量x的取值范围.
  • 20. (2018·绍兴模拟) 如图所示,将矩形OABC置于平面直角坐标系中,点A,C分别在x,y轴的正半轴上,已知点B(4,2),将矩形OABC翻折,使得点C的对应点P恰好落在线段OA(包括端点O,A)上,折痕所在直线分别交BC、OA于点D、E;若点P在线段OA上运动时,过点P作OA的垂线交折痕所在直线于点Q.

    1. (1) 求证:CQ=QP
    2. (2) 设点Q的坐标为(x,y),求y关于x的函数关系式及自变量x的取值范围;
    3. (3) 如图2,连结OQ,OB,当点P在线段OA上运动时,设三角形OBQ的面积为S,当x取何值时,S取得最小值,并求出最小值;

微信扫码预览、分享更方便

试卷信息