当前位置: 初中数学 / 综合题
  • 1. (2019九上·高邮期末) 如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在抛物线上(与A,B两点不重合),若△ABP的三边满足AP2+BP2=AB2 , 则我们称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.

    1. (1) 直接写出抛物线y=x2﹣1的勾股点坐标为      ;
    2. (2) 如图2,已知抛物线:y=ax2+bx(a<0,b>0)与x轴交于A、B两点,点P为抛物线的顶点,问点P能否为抛物线的勾股点,若能,求出b的值;
    3. (3) 如图3,在平面直角坐标系中,点A(2,0),B(12,0),点P到x轴的距离为1,点P是过A、B两点的抛物线上的勾股点,求过P、A、B三点的抛物线的解析式和点P的坐标.

微信扫码预览、分享更方便