当前位置: 初中数学 / 综合题
  • 1. (2019·南岸模拟) 如图①,抛物线y=﹣ x2+x+4与x轴交于A,B两点,与y轴交于点C,点D为线段AC的中点,直线BD与抛物线交于另一点E,与y轴交于点F.

    1. (1) 求直线BD的解析式;
    2. (2) 如图②,点P是直线BE上方抛物线上一动点,连接PD,PF,当△PDF的面积最大时,在线段BE上找一点G,使得PG﹣ GE的值最小,求出点G的坐标及PG﹣ GE的最小值;
    3. (3) 将抛物线沿直线AC平移,点A,C平移后的对应点为A′,C'.在平面内有一动点H,当以点B,A',C',H为顶点的四边形为平行四边形时,在直线AC上方找一个满足条件的点H,与直线AC下方所有满足条件的点H为顶点的多边形为轴对称图形时,求出点A′的坐标.

微信扫码预览、分享更方便