当前位置: 初中数学 / 综合题
  • 1. (2020·松滋模拟) 如图(1)已知矩形AOCD在平面直角坐标系xOy中,∠CAO=60°,OA=2,B点的坐标为(2,0),动点M以每秒2个单位长度的速度沿A→C→B运动(M点不与点A、点B重合),设运动时间为t秒.

    1. (1) 求经过B、C、D三点的抛物线解析式;
    2. (2) 点P在(1)中的抛物线上,当M为AC中点时,若△PAM≌△PDM,求点P的坐标;
    3. (3) 当点M在CB上运动时,如图(2)过点M作ME⊥AD,MF⊥x轴,垂足分别为E、F,设矩形AEMF与△ABC重叠部分面积为S,求S与t的函数关系式,并求出S的最大值;
    4. (4) 如图(3)点P在(1)中的抛物线上,Q是CA延长线上的一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,求点P的坐标.

微信扫码预览、分享更方便