当前位置: 初中数学 / 综合题
  • 1. (2020·章丘模拟) 如图1,在平面直角坐标系中,抛物线y=﹣ x2+ x+ 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D.

    1. (1) 求直线BC的解析式;
    2. (2) 如图2,点P为直线BC上方抛物线上一点,连接PB、PC.当△PBC的面积最大时,在线段BC上找一点E(不与B、C重合),使PE+ BE的值最小,求点P的坐标和PE+ BE的最小值;
    3. (3) 如图3,点G是线段CB的中点,将抛物线y=﹣ x2+ x+ 沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为F.在抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为直角三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便