当前位置: 初中数学 / 综合题
  • 1. (2016九上·长春期中)

    如图,抛物线y=﹣ x2+bx+c经过A(﹣1,0),B(0,2)两点,将△OAB绕点B逆时针旋转90°后得到△O′A′B′,点A落到点A′的位置.

    1. (1) 求抛物线对应的函数关系式;

    2. (2) 将抛物线沿y轴平移后经过点A′,求平移后所得抛物线对应的函数关系式;

    3. (3) 设(2)中平移后所得抛物线与y轴的交点为C,若点P在平移后的抛物线上,且满足△OCP的面积是△O′A′P面积的2倍,求点P的坐标;

    4. (4) 设(2)中平移后所得抛物线与y轴的交点为C,与x轴的交点为D,点M在x轴上,点N在平移后所得抛物线上,直接写出以点C,D,M,N为顶点的四边形是以CD为边的平行四边形时点N的坐标.

微信扫码预览、分享更方便