当前位置: 高中数学 / 单选题
  • 1. (2016高三上·韶关期中) 对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0 , 则称点(x0 , f(x0))为函数y=f(x)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=2x3﹣3x2+ ,则g( )+g( )+…+g( )=(   )

    A . 100 B . 50 C . D . 0

微信扫码预览、分享更方便