试题
试卷
试题
首页
充值中心
开通VIP会员
特惠下载包
激活权益
帮助中心
登录
注册
当前位置:
高中数学
/
填空题
1.
(2017高三上·会宁期末)
对于三次函数f(x)=ax
3
+bx
2
+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″是f′(x)的导数,若方程f″(x)=0有实数解x
0
, 则称点(x
0
, f(x
0
))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.请你根据这一发现,求:函数
对称中心为
.
微信扫码预览、分享更方便
使用过本题的试卷
2016-2017学年甘肃省白银市会宁四中高三上学期期末数学试卷(理科)