当前位置: 初中数学 / 综合题
  • 1. 我们知道,任意一个大于1的正整数n都可以进行这样的分解:n=p+q(p、q是正整数,且p≤q),在n的所有这种分解中,如果p、q两数的乘积最大,我们就称p+q是n的最佳分解,并规定在最佳分解时:F(n)=pq.例如6可以分解成1+5,2+4,或3+3,因为1×5<2×4<3×3,所以3+3是6的最佳分解,所以F(6)=3×3=9.

    1. (1) 求F(11)的值;
    2. (2) 一个正整数,由N个数字组成,若从左向右它的第一位数能被1整除,它的前两位数被2除余1,前三位数被3除余2,前四位数被4除余3,…,一直到前N位数被N除余(N﹣1),我们称这样的数为“多余数”,如:236的第一位数2能被1整除,前两位数23被2除余1,236被3除余2,则236是一个“多余数”.若一个小于200的三位“多余数”记为t,它的各位数字之和再加上1为一个完全平方数,请求出所有“多余数”中F(t)的最大值.

微信扫码预览、分享更方便