当前位置: 初中数学 / 综合题
  • 1. (2020·衢州) 如图1,在平面直角坐标系中,△ABC的顶点A,C分别是直线y= x+4与坐标轴的交点,点B的坐标为(-2,0)。点D是边AC上的一点,DE⊥BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF。设点D的横坐标为m,EF2为l,请探究:

    ①线段EF长度是否有最小值。

    ②△BEF能否成为直角三角形。

    小明尝试用“观察--猜想--验证--应用”的方法进行探究,请你一起来解决问题。

    1. (1) 小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2),请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别。

    2. (2) 小明结合图1,发现应用二角形和函数知识能验证(1)中的猜想.请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值。
    3. (3) 小明通过观察,推理,发现△BEF能成为直角三角形。请你求出当△BEF为直角三角形时m的值。

微信扫码预览、分享更方便