当前位置: 高中数学 / 单选题
  • 1. (2020高一下·上海期末) 德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即 );如果n是奇数,则将它乘3加1(即 ),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n(首项)按照上述规则施行变换后的第6项为1(注:1可以多次出现),则n的所有不同值的个数为(    )

    A . 3 B . 4 C . 5 D . 32

微信扫码预览、分享更方便