当前位置: 初中数学 / 实践探究题
  • 1. (2017·胶州模拟)

    探究题

    问题再现:

    数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.

    例如:利用图形的几何意义证明完全平方公式.

    证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:


    这个图形的面积可以表示成:

    (a+b)2或a2+2ab+b2

    ∴(a+b)2 =a2+2ab+b2

    这就验证了两数和的完全平方公式.

    1. (1) 类比解决:

      请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)

    2. (2)

      问题提出:如何利用图形几何意义的方法证明:13+23=32

      如图2,


      A表示1个1×1的正方形,即:1×1×1=13

      B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23

      而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.

      由此可得:13+23=(1+2)2=32

      尝试解决:

      请你类比上述推导过程,利用图形的几何意义确定:13+23+33= . (要求写出结论并构造图形写出推证过程).

    3. (3) 问题拓广:

      请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=.(直接写出结论即可,不必写出解题过程)

微信扫码预览、分享更方便