当前位置: 初中数学 / 综合题
  • 1. (2020九上·谢家集月考) 若抛物线l1的顶点A在抛物线l2上,抛物线l2的顶点B在抛物线l1上(点A与点B不重合),我们把这样的两抛物线l1 , l2称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条。

    1. (1) 在图1中,抛物线l1:y=-x2+4x-3与l2:y=a(x-4)2-3互为“伴随抛物线”,则点A的坐标为,a的值为
    2. (2) 在图2中,已知抛物线l3:y=2x2-8x+4,它的“伴随抛物线”为l4 , 若l3与y轴交于点C,点C关于l3的对称轴对称的点为D,诸求出以点D为顶点的l4的解析式;
    3. (3) 若抛物线y=a1(x-m)2+n的任意一条“伴随抛物线”的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由。

微信扫码预览、分享更方便