当前位置: 初中数学 / 综合题
  • 1. (2020九上·安阳期中) 已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=2 ,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.

    1. (1) 求经过点O,C,A三点的抛物线的解析式.
    2. (2) 若点M是抛物线上一点,且位于线段OC的上方,连接MO、MC,问:点M位于何处时三角形MOC的面积最大?并求出三角形MOC的最大面积.
    3. (3) 抛物线上是否存在一点P,使∠OAP=∠BOC?若存在,请求出此时点P的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便