如图①,已知 是等边三角形,点 为 边上中点, , 交等边三角形外角平分线 所在的直线于点 ,试探究 与 的数量关系.
小明发现:过 作 ,交 于 ,构造全等三角形,经推理论证问题得到解决.请直接写出 与 的数量关系,并说明理由.
如图②,当 是线段 上(除 外)任意一点时(其他条件不变)试猜想 与 的数量关系并证明你的结论.
当 是线段 上延长线上,且满足 (其他条件不变)时,请判断 的形状,并说明理由.
微信扫码预览、分享更方便