当前位置: 高中数学 / 解答题
  • 1. (2020高一上·青岛期末) 若函数 的图象均连续不断, 均在任意的区间上不恒为0, 的定义域为 的定义域为 ,存在非空区间 ,满足: ,均有 ,则称区间A为 的“ 区间”

    1. (1) 写出 上的一个“ 区间”(无需证明);
    2. (2) 若 的“ 区间”,证明: 不是偶函数;
    3. (3) 若 ,且 在区间 上单调递增, 的“ 区间”,证明: 在区间 上存在零点.

微信扫码预览、分享更方便